Abstract

Axially symmetric half-wave plates have been used to generate radially polarized beams that have constant phase in the plane transverse to propagation. However, since the retardance introduced by these waveplates depends on the wavelength, it is difficult to generate radially polarized beams achromatically. This paper describes a technique suitable for the generation of achromatic, radially polarized beams with uniform phase. The generation system contains, among other optical components, an achromatic, axially symmetric quarter-wave plate based on total internal reflection. For an incident beam with a constant phase distribution, the system generates a beam with an extra geometrical phase term. To generate a beam with the correct phase distribution, it is therefore necessary to have an incident optical vortex with an azimuthally varying phase distribution of the form exp( + iθ). We show theoretically that the phase component of radially polarized beam is canceled out by the phase component of the incident optical vortex, resulting in a radially polarized beam with uniform phase. Additionally, we present an experimental setup able to generate the achromatic, uniform-phase, radially polarized beam and experimental results that confirm that the generated beam has the correct phase distribution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics (Elsevier, 2009).
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [CrossRef]
  3. K. Youngworth, T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  4. A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000).
    [CrossRef]
  5. J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
    [CrossRef]
  6. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [CrossRef] [PubMed]
  7. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
    [CrossRef] [PubMed]
  8. Y. Kozawa, S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett. 33(19), 2278–2280 (2008).
    [CrossRef] [PubMed]
  9. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
    [CrossRef] [PubMed]
  10. M. Endo, M. Sasaki, R. Koseki, “Analysis of an optical resonator formed by a pair of specially shaped axicons,” J. Opt. Soc. Am. A 29(4), 507–512 (2012).
    [CrossRef] [PubMed]
  11. W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [CrossRef]
  12. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  13. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  14. K. Yamane, Y. Toda, R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20(17), 18986–18993 (2012).
    [CrossRef] [PubMed]
  15. Y. Tokizane, K. Oka, R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17(17), 14517–14525 (2009).
    [CrossRef] [PubMed]
  16. Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
    [CrossRef]
  17. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [CrossRef]
  18. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46(30), 7544–7551 (2007).
    [CrossRef] [PubMed]
  19. Q. Zhan, J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002).
    [CrossRef] [PubMed]
  20. T. Wakayama, K. Komaki, Y. Otani, T. Yoshizawa, “Achromatic axially symmetric wave plate,” Opt. Express 20(28), 29260–29265 (2012).
    [CrossRef] [PubMed]
  21. T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012).
    [CrossRef]
  22. G. A. Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
    [CrossRef] [PubMed]
  23. X. C. Yuan, J. Lin, J. Bu, R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
    [CrossRef] [PubMed]

2012 (4)

2011 (2)

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[CrossRef] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (3)

2007 (2)

2006 (1)

2003 (1)

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

2000 (2)

K. Youngworth, T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

1983 (1)

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[CrossRef]

Ahmed, M. A.

Beresna, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

Bomzon, Z.

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Brown, T.

Bu, J.

Burge, R. E.

Dorn, R.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Endo, M.

Fontana, J. R.

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[CrossRef]

Gao, B. Z.

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Graf, T.

Hashimoto, N.

Hasman, E.

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Hibi, T.

Horanai, H.

Jackel, S.

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

Kleiner, V.

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Komaki, K.

Koseki, R.

Kozawa, Y.

Kraus, M.

Kurihara, M.

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Lin, J.

Lumer, Y.

Machavariani, G.

Meir, A.

Michalowski, A.

Moh, K. J.

Morita, R.

Moshe, I.

Nemoto, T.

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Oka, K.

Otani, Y.

T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012).
[CrossRef]

T. Wakayama, K. Komaki, Y. Otani, T. Yoshizawa, “Achromatic axially symmetric wave plate,” Opt. Express 20(28), 29260–29265 (2012).
[CrossRef] [PubMed]

Pantell, R. H.

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Sasaki, M.

Sato, A.

Sato, S.

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Swartzlander, G. A.

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Toda, Y.

Tokizane, Y.

Voss, A.

Wakayama, T.

T. Wakayama, K. Komaki, Y. Otani, T. Yoshizawa, “Achromatic axially symmetric wave plate,” Opt. Express 20(28), 29260–29265 (2012).
[CrossRef] [PubMed]

T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012).
[CrossRef]

Weber, R.

Yamane, K.

Yokoyama, H.

Yoshizawa, T.

T. Wakayama, K. Komaki, Y. Otani, T. Yoshizawa, “Achromatic axially symmetric wave plate,” Opt. Express 20(28), 29260–29265 (2012).
[CrossRef] [PubMed]

T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012).
[CrossRef]

Youngworth, K.

Yuan, X. C.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[CrossRef]

Q. Zhan, J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002).
[CrossRef] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[CrossRef]

J. Appl. Phys. (1)

J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Nature (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012).
[CrossRef]

Other (1)

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics (Elsevier, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Generation system of the achromatic, uniform-phase, radially polarized beam.

Fig. 2
Fig. 2

Details of the output beam.

Fig. 3
Fig. 3

Optical configuration of the systems to generate and measure uniform-phase and spiral-phase, achromatic, radially polarized beams.

Fig. 4
Fig. 4

Pictures of the achromatic, axially symmetric quarter-wave plate.

Fig. 5
Fig. 5

Mach-Zehnder interferometer for the observation of radially polarized beams.

Fig. 6
Fig. 6

Axially symmetric quarter-wave plate (ASQ).

Fig. 7
Fig. 7

Output beam after the CO.

Fig. 8
Fig. 8

Experimental interference fringes for the radially polarized beams.

Fig. 9
Fig. 9

Numerical interference fringes for the radially polarized beams.

Tables (1)

Tables Icon

Table 1 Conventional generation techniques of radially polarized beams [1215]

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 1 =LPAQASRAQLP E 0 ,
E 1 =( E x E y )=isin δ( λ ) 2 ( 1 0 ) e +iθ .
E 2 =APRAASQAQ E 1 .
E 2 =( E x E y )= e i 3π 4 sin δ( λ ) 2 ( cosθ sinθ ),
E ref. = a 2 ( 1+i 1+i ),
E obj1 =b e i π 4 ( cosθ sinθ ) e iθ ,
I= I 0 ( a 2 + b 2 + 2 abcos2θ ),
E obj2 = c e i 3π 4 2 ( cosθ sinθ ),
I= I 0 ( a 2 + c 2 2 accos( θ+ π 2 ) ).

Metrics