Abstract

We investigated enhancement of sensitivity of sensors based on metallic photonic crystals through tuning the thickness of the waveguide layer by pulsed laser deposition. Thicker waveguides made of InGaZnO allow double resonance of Fano coupling modes due to plasmonic-photonic interactions. Tuning the angle of incidence enables overlap between these doubly resonant modes, which induces much enlarged and spectrally narrowed sensor signals, leading to significantly enhanced sensitivity of the sensor device. The thickness of the waveguide layer is found to be a crucial structural parameter to improve sensitivity of the MPC sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
    [CrossRef] [PubMed]
  2. J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
    [CrossRef] [PubMed]
  3. P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
    [CrossRef] [PubMed]
  4. N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
    [CrossRef]
  5. A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
    [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  7. K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  8. S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [CrossRef] [PubMed]
  9. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [CrossRef] [PubMed]
  10. J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
    [CrossRef] [PubMed]
  11. J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
    [CrossRef] [PubMed]
  12. R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [CrossRef] [PubMed]
  13. J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
    [CrossRef] [PubMed]
  14. X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
    [CrossRef]
  15. X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [CrossRef] [PubMed]
  16. X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
    [CrossRef] [PubMed]
  17. X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

2013

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

2012

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

2011

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

2010

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

2009

X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

2008

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

2006

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

2005

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Abbas, A.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Atkinson, R.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Carter, D. J. D.

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

Chang, L.

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Das, A.

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Dou, F.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

Feng, S. F.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

Free, P.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Friend, R. H.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Ghosh, S. K.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Giessen, H.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Guo, H. C.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Haes, A. J.

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Hafner, J. H.

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hendren, W. R.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Hogle, J. M.

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Höök, F.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Ji, J.

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

Jia, P.

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

Jiang, H.

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

Jonsson, M. P.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Kharasch, E. D.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Klein, W. L.

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Knoll, W.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Larson, D. N.

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Lee, T.-W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Liu, H. M.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ma, X. M.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Mayer, K. M.

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

McPhillips, J.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Morrissey, J. J.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Murphy, A.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Nau, D.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Neoh, K. G.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

O’Connell, J. G.

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

Pal, T.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Pang, Z. G.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

Pollard, R. J.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Sabarinathan, J.

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

Schatz, G. C.

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Singamaneni, S.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Sligar, S. G.

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Su, X.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Teng, J.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Tian, L.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Yang, J.

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

Yang, J. C.

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Zayats, A. V.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Zhai, T. R.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

Zhang, J.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

Zhang, N.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Zhang, X.

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Zhang, X. P.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Zhao, P. X.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

Zhou, X.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Acc. Chem. Res.

R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

ACS Nano

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[CrossRef]

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013).
[CrossRef] [PubMed]

Anal. Chem.

J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[CrossRef] [PubMed]

Chem. Rev.

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006).
[CrossRef] [PubMed]

Nano Lett.

J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Nanotechnology

X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013).
[CrossRef]

Sensors (Basel)

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) AFM image of the InGaZnO film fabricated by PLD. (b) Transmission spectra of InGaZnO films with different composition ratios.

Fig. 2
Fig. 2

Structural composition of InGaZnO-waveguided MPCs sitting on fused silica substrate and light-incident geometry for the optical extinction spectroscopic measurements.

Fig. 3
Fig. 3

SEM (a) and AFM (b) images of the MPCs on an InGaZnO waveguide.

Fig. 4
Fig. 4

Optical extinction spectroscopic measurements on the MPCs on InGaZnO waveguides with different thickness for (a) TM and (b) TE polarizations.

Fig. 5
Fig. 5

Doubly resonant modes for thick InGaZnO waveguides: (a) T = 270 nm, TE polarization; (b) T = 270 nm, TM polarization; (c): T = 350 nm, TE polarization; (d): T = 350 nm, TM polarization.

Fig. 6
Fig. 6

(a), (b), and (c): sensor measurements on the concentration of glucose/water solutions using MPCs with a waveguide thickness of 110 nm, 270 nm, and 350 nm, respectively. (d): comparison of the sensor performance defined by amplitude of the sensor signal as a function of the solution concentration between sensor devices with different waveguide thicknesses.

Fig. 7
Fig. 7

(a) Angle-resolved tuning properties of the optical extinction spectrum for MPCs with a waveguide thickness of 350 nm. Pure water has been circulating in the sensor channels. Transmission spectrum through the sensor and that through the MPC as the signal in the calculation of the extinction spectra. (b) Sensor signal spectra at different concentrations of glucose/water solutions. The transmission spectrum through pure water was used as the blank and that through glucose solution as the signal.

Fig. 8
Fig. 8

Comparison of the amplitude of the sensor signal as a function of the concentration of the glucose/water solution at different angles of incidence for T = 350 nm.

Fig. 9
Fig. 9

(a) Simulated transmission spectra with the incident angle increased from 0 to 14 degrees for the sensor device having a waveguide thickness of 350 nm, where the two resonance modes are overlapped at an incident angle of 10 degrees, as indicated by the red spectrum. (b) Variation of the spectral positions of the two resonance modes (A and B) around their overlap with increasing the refractive index of the environmental medium from 1.33 to 1.36. Inset: Enlarged spectrum at the approximate overlap position between the two resonance modes at an incident angle of 10 degrees.

Metrics