Abstract

Design and simulation results are presented for an ultralow switching energy, resonator based, silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and Q ~8500 resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length Lm ~λ is used to alter the index of refraction and, therefore, shift the resonance wavelength via fast carrier depletion. Differential signaling of the device with ΔV ~0.6 Volts allows for a 6dB extinction ratio at telecom wavelengths with an energy cost as low as 14 attojoules/bit.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [CrossRef] [PubMed]
  2. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  3. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]
  4. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  5. T. Tanabe, E. Kuramochi, H. Taniyama, M. Notomi, “Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity,” Opt. Lett. 35(23), 3895–3897 (2010).
    [CrossRef] [PubMed]
  6. B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
    [CrossRef]
  7. V. J. Sorger, “λ-size silicon-based modulator,” invited paper 8629–23, SPIE Proceedings vol. 8629, Silicon Photonics VIII, SPIE Photonics West, San Francisco, 5 Feb 2013.
  8. Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [CrossRef]
  9. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  10. M. Nedeljkovic, R. A. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal 3(6), 1171–1180 (2011).
    [CrossRef]
  11. M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” SPIE Photonics West, paper 8266–31, San Jose, CA (25 Jan 2012).
  12. W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011).
    [CrossRef] [PubMed]
  13. D. A. B. Miller, “Energy Consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
    [CrossRef] [PubMed]
  14. S. P. Anderson and M. Philippe, Fauchet, “Conformal P-N Junctions for Low Energy Electro-optic Switching,” OSA/CLEO/IQEC (2009).
  15. S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
    [CrossRef] [PubMed]
  16. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
    [CrossRef] [PubMed]
  17. D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. Bœuf, L. Vivien, “Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers,” Opt. Express 21(19), 22471–22475 (2013).
    [CrossRef] [PubMed]
  18. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
    [CrossRef] [PubMed]
  19. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
    [CrossRef] [PubMed]
  20. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20(11), 12014–12020 (2012).
    [CrossRef] [PubMed]
  21. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [CrossRef] [PubMed]
  22. H.-C. Liu, A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20(8), 9249–9263 (2012).
    [CrossRef] [PubMed]
  23. C. Qiu, J. Chen, Q. Xu, “Ultraprecise measurement of resonance shift for sensing applications,” Opt. Lett. 37(23), 5012–5014 (2012).
    [CrossRef] [PubMed]
  24. R. A. Soref, J. Guo, G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express 19(19), 18122–18134 (2011).
    [CrossRef] [PubMed]
  25. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [CrossRef] [PubMed]
  26. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
    [CrossRef] [PubMed]

2013

2012

D. A. B. Miller, “Energy Consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
[CrossRef] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
[CrossRef] [PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[CrossRef] [PubMed]

H.-C. Liu, A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20(8), 9249–9263 (2012).
[CrossRef] [PubMed]

C. Qiu, J. Chen, Q. Xu, “Ultraprecise measurement of resonance shift for sensing applications,” Opt. Lett. 37(23), 5012–5014 (2012).
[CrossRef] [PubMed]

2011

2010

2007

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Absil, P.

Akiyama, S.

Alloatti, L.

Almeida, V. R.

Al-Saadi, A.

Asghari, M.

Ayazi, A.

Baba, T.

Baehr-Jones, T.

Baets, R.

Baudot, C.

Bœuf, F.

Bogaerts, W.

Bouville, D.

Chen, H.

Chen, J.

Crozat, P.

Cunningham, J. E.

Debnath, K.

Deotare, P. B.

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Ding, J.

Ding, R.

Dong, P.

Dumon, P.

Eichler, H. J.

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Fédéli, J.-M.

Fegadolli, W. S.

Feng, D.

Feng, N.-N.

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Franke, B. A.

Gardes, F. Y.

Guo, J.

Harris, N. C.

Hillerkuss, D.

Hirayama, N.

Hochberg, M.

Horikawa, T.

Imai, M.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ji, R.

Jiang, X.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kawasaki, K.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Komorowska, K.

Korn, D.

Krauss, T. F.

Krishnamoorthy, A. V.

Kupijai, S.

Kuramochi, E.

Le Roux, X.

Lee, P.

Lentine, A. L.

Leuthold, J.

Li, G.

Li, Y.

Liang, H.

Liao, S.

Lim, A. E.-J.

Liow, T.-Y.

Lipson, M.

Liu, H.-C.

Liu, Y.

Lo, G.-Q.

Loncar, M.

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Lu, Y.

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G. Z.

M. Nedeljkovic, R. A. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal 3(6), 1171–1180 (2011).
[CrossRef]

Meister, S.

Menezo, S.

Miller, D. A. B.

Min, R.

Nedeljkovic, M.

M. Nedeljkovic, R. A. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal 3(6), 1171–1180 (2011).
[CrossRef]

Noguchi, Y.

Notomi, M.

O’Faolain, L.

Oliveira, J. E. B.

Olivier, S.

Pantouvaki, M.

Pinguet, T.

Qi, B.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

Qiu, C.

Quan, Q.

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Rasigade, G.

Reed, G. T.

Rhee, H.

Richter, H. H.

Rivallin, P.

Roh, Y.-G.

Scherer, A.

Schmidt, B.

Schneider, T.

Shafiiha, R.

Shakya, J.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Soref, R. A.

M. Nedeljkovic, R. A. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal 3(6), 1171–1180 (2011).
[CrossRef]

R. A. Soref, J. Guo, G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express 19(19), 18122–18134 (2011).
[CrossRef] [PubMed]

Souhaité, A.

Steffan, A. G.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Stolarek, D.

Streshinsky, M.

Sun, G.

Takahashi, H.

Tanabe, T.

Taniyama, H.

Teo, S. H.-G.

Theiss, C.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Tian, H.

Tian, Y.

Tillack, B.

Trotter, D. C.

Usuki, T.

Van Campenhout, J.

Verheyen, P.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vivien, L.

Vulliet, N.

Watts, M. R.

Woggon, U.

Xu, Q.

Yang, J.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

Yang, L.

Yang, M.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

Yariv, A.

Young, R. W.

Yu, H.

Yu, M.

Yu, P.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

Zhang, L.

Zhang, Y.

Zheng, D.

Zhou, P.

Zhu, W.

Ziebell, M.

Zimmermann, L.

Zortman, W. A.

Appl. Phys. Lett.

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett. 23(14), 992–994 (2011).
[CrossRef]

IEEE Photonics Journal

M. Nedeljkovic, R. A. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal 3(6), 1171–1180 (2011).
[CrossRef]

Nature

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Opt. Express

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
[CrossRef] [PubMed]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[CrossRef] [PubMed]

D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. Bœuf, L. Vivien, “Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers,” Opt. Express 21(19), 22471–22475 (2013).
[CrossRef] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
[CrossRef] [PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[CrossRef] [PubMed]

H.-C. Liu, A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20(8), 9249–9263 (2012).
[CrossRef] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011).
[CrossRef] [PubMed]

D. A. B. Miller, “Energy Consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
[CrossRef] [PubMed]

R. A. Soref, J. Guo, G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express 19(19), 18122–18134 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
[CrossRef] [PubMed]

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

V. J. Sorger, “λ-size silicon-based modulator,” invited paper 8629–23, SPIE Proceedings vol. 8629, Silicon Photonics VIII, SPIE Photonics West, San Francisco, 5 Feb 2013.

S. P. Anderson and M. Philippe, Fauchet, “Conformal P-N Junctions for Low Energy Electro-optic Switching,” OSA/CLEO/IQEC (2009).

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” SPIE Photonics West, paper 8266–31, San Jose, CA (25 Jan 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) schematic view of device and (b) cross sectional views of the device for forward and reverse bias taken through the center of the photonic crystal cavity region

Fig. 2
Fig. 2

Top down view of device

Fig. 3
Fig. 3

Modulation shift for 0.935V to −1.14V switching in a 2μm modulation length device as a function of p-n junction offset.

Fig. 4
Fig. 4

Transmission spectra as a function of applied voltage and modulation length.

Fig. 5
Fig. 5

(a) transmission, (b) quality factor, (c) shift, and (d) extinction ratio as a function of modulation length.

Fig. 6
Fig. 6

|E|2 field profiles for a −2.16V biased 2μm modulation length device. (a) cross-sectional view of injected source mode in the bare Si waveguide, (b) cross-sectional view in the center of the nanobeam photonic crystal cavity, and (c) profile through mid-plane of device as compared to the device layout. The dashed black line is a guide to the center of the device.

Fig. 7
Fig. 7

Junction capacitance curves for modulator lengths of 0.5μm, 1μm, and 2μm. Inset: Junction capacitance over larger range showing exponential growth for increasing forward bias.

Tables (3)

Tables Icon

Table 1 Width of the depletion region as a function of applied voltage

Tables Icon

Table 2 Energy per bit Eb required to switch from 0.3V to various reverse bias voltages for various modulation lengths. Shaded areas correspond to values with >5dB extinction.

Tables Icon

Table 3 Comparison with state of the art silicon modulators

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ bi = V t ln N p N n n i 2
W= 2 ε 0 ε r q ( 1 N p + 1 N n )( φ bi V b )
X p =W( N n N p + N n ) and X n ( N p N p + N n )
C=dQ/dV
E s = 1 2 ( C for V o 2 + C rev V R 2 )
E b = 1 2 Es

Metrics