Abstract

Ultracold and high-density 1s orthoexcitons in semiconductor cuprous oxide are prepared via resonant two-photon absorption of a phase-tailored femtosecond pulse, by utilizing an acousto-optic programmable dispersive filter. The stability of the quantum degenerate exciton gas is studied using excitonic Lyman spectroscopy. A density of 1016 cm−3 is realized without creating hot carriers, and the Lyman spectrum remains unchanged at this density. This result assures the stability of a spontaneous Bose–Einstein condensate of excitons at sub-Kelvin temperatures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920–1960 (2000).
    [CrossRef]
  2. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
    [CrossRef]
  3. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
    [CrossRef]
  4. M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
    [CrossRef]
  5. E. Seres, R. Herzog, J. Seres, D. Kaplan, C. Spielmann, “Generation of intense 8 fs laser pulses,” Opt. Express 11, 240–247 (2003).
    [CrossRef] [PubMed]
  6. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).
  7. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35, 3856–3858 (2010).
    [CrossRef] [PubMed]
  8. S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
    [CrossRef] [PubMed]
  9. S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
    [CrossRef] [PubMed]
  10. C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
    [CrossRef] [PubMed]
  11. G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
    [CrossRef]
  12. L. Canova, X. Chen, A. Trisorio, A. Jullien, A. Assion, G. Tempea, N. Forget, T. Oksenhendler, R. Lopez-Martens, “Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF,” Opt. Lett. 34, 1333–1335 (2009).
    [CrossRef] [PubMed]
  13. N. Forget, L. Canova, X. Chen, A. Jullien, R. Lopez-Martens, “Closed-loop carrier-envelope phase stabilization with an acousto-optic programmable dispersive filter,” Opt. Lett. 34, 3647–3649 (2009).
    [CrossRef] [PubMed]
  14. Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008).
    [CrossRef] [PubMed]
  15. R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
    [CrossRef]
  16. D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
    [CrossRef]
  17. D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
    [CrossRef]
  18. D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
    [CrossRef]
  19. J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993).
    [CrossRef] [PubMed]
  20. N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005).
    [CrossRef]
  21. K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
    [CrossRef]
  22. R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
    [CrossRef]
  23. K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
    [CrossRef]
  24. K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
    [CrossRef]
  25. D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [CrossRef]
  26. D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
    [CrossRef]
  27. T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
    [CrossRef]
  28. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
    [CrossRef] [PubMed]
  29. T. Suzuki, R. Shimano, “Time-resolved formation of excitons and electron-hole droplets in Si studied using terahertz spectroscopy,” Phys. Rev. Lett. 103, 057401 (2009).
    [CrossRef] [PubMed]
  30. T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
    [CrossRef]
  31. J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
    [CrossRef]
  32. K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
    [CrossRef]
  33. J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
    [CrossRef]
  34. D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
    [CrossRef] [PubMed]
  35. M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
    [CrossRef]
  36. S. E. Mani, J. I. Jang, J. B. Ketterson, “Large third-order susceptibility and third-harmonic generation in centrosymmetric Cu2O crystal,” Opt. Lett. 34, 2817–2819 (2009).
    [CrossRef] [PubMed]
  37. S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University, 2000).
    [CrossRef]

2012

2011

K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
[CrossRef]

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

2010

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35, 3856–3858 (2010).
[CrossRef] [PubMed]

R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
[CrossRef]

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

2009

2008

Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008).
[CrossRef] [PubMed]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

2007

K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
[CrossRef]

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

2006

T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
[CrossRef]

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

2005

N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005).
[CrossRef]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

2003

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

E. Seres, R. Herzog, J. Seres, D. Kaplan, C. Spielmann, “Generation of intense 8 fs laser pulses,” Opt. Express 11, 240–247 (2003).
[CrossRef] [PubMed]

2002

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

2000

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920–1960 (2000).
[CrossRef]

1999

D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
[CrossRef]

1998

D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

1997

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

1993

J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993).
[CrossRef] [PubMed]

1991

D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
[CrossRef]

1987

D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
[CrossRef] [PubMed]

1986

D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
[CrossRef]

1980

D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
[CrossRef]

1976

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

Akimov, D.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Assion, A.

Austin, D. R.

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
[CrossRef] [PubMed]

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

Bartelt, H.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Bates, P. K.

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

Baumberg, J. J.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Bayer, M.

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

Benoît à la Guillaume, C.

D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
[CrossRef]

Bergner, G.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Bhardwaj, S.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Biegert, J.

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
[CrossRef] [PubMed]

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

Birge, J. R.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Brandt, J.

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

Brinks, D.

R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
[CrossRef]

Brocklesby, W. S

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Bueno, J. M.

Canova, L.

Carnahan, M. A.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

Cerullo, G.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Chae, E.

K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
[CrossRef]

Chambaret, J. P.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Chemla, D. S.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

Chen, L.-J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Chen, X.

Cheng, Z.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

Chériaux, G.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Cirmi, G.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Cornaggia, C.

Cousin, S. L.

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
[CrossRef] [PubMed]

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

de Paula, A. M.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Dietzek, B.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Eggleton, B. J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Ferr, S.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Forget, N.

Frey, J. G.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Frölich, D.

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

Froud, C. A.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Grabielle, S.

Grün, A.

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

Hägele, D.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

Hanna, D. C

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Herzog, R.

Hildner, R.

R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
[CrossRef]

Hodby, J. W.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

Hong, K.-H.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Huang, S.-W.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Hulin, D.

D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
[CrossRef]

Ideguchi, T.

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
[CrossRef]

Jang, J. I.

Jenkins, T. E.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

Jullien, A.

Kaindl, R. A.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

Kaplan, D.

Kärtner, F. X.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Ketterson, J. B.

Kieseling, F.

R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
[CrossRef]

Kubouchi, M.

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

Kuwata-Gonokami, M.

K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
[CrossRef]

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
[CrossRef]

T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
[CrossRef]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

Laude, V.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

Lewellen, J.

Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008).
[CrossRef] [PubMed]

Li, E.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Li, Y.

Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008).
[CrossRef] [PubMed]

Lin, J. L.

J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993).
[CrossRef] [PubMed]

D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
[CrossRef]

Lopez-Martens, R.

Lövenich, R.

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

Mani, S. E.

Meshulach, D.

D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

Moses, J.

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Moskalenko, S. A.

S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University, 2000).
[CrossRef]

Moulet, A.

Mysyrowicz, A.

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
[CrossRef]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
[CrossRef] [PubMed]

D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
[CrossRef]

D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
[CrossRef]

Nagasawa, N.

N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005).
[CrossRef]

Naka, N.

R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
[CrossRef]

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005).
[CrossRef]

Notebaert, L.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

O’Hara, K. E.

K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
[CrossRef]

Oksenhendler, T.

Pittman, M.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Popp, J.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Praeger, M.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Rogers, E. T.

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Rousseau, J. P.

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

Sandfort, C.

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

Schlücker, S.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Schwab, C.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

Schwartz, R.

R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
[CrossRef]

Seres, E.

Seres, J.

Shimano, R.

T. Suzuki, R. Shimano, “Time-resolved formation of excitons and electron-hole droplets in Si studied using terahertz spectroscopy,” Phys. Rev. Lett. 103, 057401 (2009).
[CrossRef] [PubMed]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

Silberberg, Y.

D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

Snoke, D. W.

D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
[CrossRef]

D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
[CrossRef] [PubMed]

S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University, 2000).
[CrossRef]

Spielmann, C.

E. Seres, R. Herzog, J. Seres, D. Kaplan, C. Spielmann, “Generation of intense 8 fs laser pulses,” Opt. Express 11, 240–247 (2003).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

Stolz, H.

R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
[CrossRef]

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

Súilleabháin, L. Ó.

K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
[CrossRef]

Suzuki, T.

T. Suzuki, R. Shimano, “Time-resolved formation of excitons and electron-hole droplets in Si studied using terahertz spectroscopy,” Phys. Rev. Lett. 103, 057401 (2009).
[CrossRef] [PubMed]

Tamura, H.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

Tayagaki, T.

T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
[CrossRef]

Tempea, G.

Tournois, P.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

Trauernicht, D. P.

D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
[CrossRef]

Trisorio, A.

Trivich, D.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

van Hulst, N. F.

R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
[CrossRef]

Vater, E.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Verluise, F.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920–1960 (2000).
[CrossRef]

Wolfe, J. P.

K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
[CrossRef]

J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993).
[CrossRef] [PubMed]

D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
[CrossRef]

D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
[CrossRef] [PubMed]

D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
[CrossRef]

Yoshioka, K.

K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
[CrossRef]

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
[CrossRef]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

Appl. Phys. B

M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[CrossRef]

J. Phys. C Solid State Phys.

J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976).
[CrossRef]

J. Lumin.

N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005).
[CrossRef]

Laser Phys. Lett.

G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010).
[CrossRef]

Nat. Commun.

K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011).
[CrossRef]

Nat. Phys.

R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010).
[CrossRef]

S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).

Nature

D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003).
[CrossRef] [PubMed]

New J. Phys.

R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012).
[CrossRef]

Opt. Lett.

S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006).
[CrossRef] [PubMed]

Opt. Commun.

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986).
[CrossRef]

K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010).
[CrossRef]

Phys. Rev. Lett.

D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987).
[CrossRef] [PubMed]

Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008).
[CrossRef] [PubMed]

D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980).
[CrossRef]

Phys. Rev. A

D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

Phys. Rev. B

D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991).
[CrossRef]

K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999).
[CrossRef]

K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007).
[CrossRef]

T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006).
[CrossRef]

Phys. Rev. Lett.

T. Suzuki, R. Shimano, “Time-resolved formation of excitons and electron-hole droplets in Si studied using terahertz spectroscopy,” Phys. Rev. Lett. 103, 057401 (2009).
[CrossRef] [PubMed]

J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007).
[CrossRef]

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005).
[CrossRef]

J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993).
[CrossRef] [PubMed]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920–1960 (2000).
[CrossRef]

Other

S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Excitation and probe configurations of present experiment. Generation of ultracold 1s orthoexcitons in Cu2O is realized by resonant two-photon excitation using a broadband femtosecond pulse. The density and the momentum distribution of the generated orthoexcitons are detected by exciton Lyman spectroscopy. The energy of the 1s–np transition of orthoexcitons is approximately 116 meV, 129 meV, and 133 meV, respectively.

Fig. 2
Fig. 2

Applied spectral phase (red curve). Note that the phase is antisymmetric about the two-photon resonance wavelength (1220 nm). The dashed curve designates a modeled spectrum of the excitation pulse.

Fig. 3
Fig. 3

Experimental setup (see text). A grating pair was used to avoid nonlinear optical effects that are induced in the AOPDF.

Fig. 4
Fig. 4

Coherent control of ultracold 1s orthoexcitons at relatively low density. The relative orthoexciton density (vertical axis) is recorded as a function of the central wavelength of the added optical phase given in Eq. (3). The open circles are experimental data. The solid curve is calculated by Eq. (2).

Fig. 5
Fig. 5

Induced absorption spectra 5 ps after irradiation by the pump pulse. The spectral resolution is 0.1 meV. Red and blue curves correspond to transform-limited (TL) and sine-like phase modulation [Eq. (3)]), respectively. (a) Low-density excitation (1.3 mJ/cm2). (b) High-density excitation (4.5 mJ/cm2). The lattice temperature is 4.2 K. An oscillatory structure due to Fabry–Perot interference in the sample crystal (220 μm thick) is removed by numerical filtering.

Fig. 6
Fig. 6

Pump energy density dependence of the two- and three-photon absorption. The amount of two- and three-photon absorption as a function of pump energy density is estimated at 116 meV (cold orthoexcitons) and 125 meV (hot orthoexcitons), respectively. We estimate the statistical uncertainty is less than 5% in the horizontal axis, and less than 2% in the vertical axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n = η ε 0 h ¯ c π | μ 1 s 2 p | 2 E 1 s 2 p Δ α ( E ) d E ,
P 2 p h | A ( ω 0 2 + Ω ) A ( ω 0 2 Ω ) × exp [ i { ϕ ( ω 0 2 + Ω ) ) + ϕ ( ω 0 2 Ω ) } ] d Ω | 2 ,
ϕ ( ω ˜ ) = π 2 sin [ ( A B | ω ˜ | ) ω ˜ ] .

Metrics