Abstract

We observe theoretically and experimentally electromagnetically induced transparency (EIT)-like effect in a single microdisk resonator (MDR) evanescently coupled with two bus waveguides. This structure is modeled using transfer matrix method, and it is revealed that the EIT-like spectrum originates from the coherent interference between two nearby low-order whispering-gallery modes (WGMs) with comparable quality factors. The EIT-like properties have been investigated analytically with respect to coupling efficiency, round-trip power attenuation, as well as phase spacing between two resonances. The resonance spacing and mode coupling are adjustable by varying the effective indices of WGMs and waveguide mode. Consequently, fully integrated MDRs were fabricated in silicon. Resonant modes and coupling efficiency are studied in one-bus waveguide coupled MDRs. Finally, EIT-like resonance is observed in a two-bus waveguides coupled MDR of 3 μm in radius with a quality factor of 4,200 and central transmission larger than 0.65. The experimental results agree with our modeling well and show good internal consistency, confirming that two WGMs coupled in a point-to-point manner are required for EIT-like effect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
    [CrossRef]
  2. X. D. Yang, S. J. Li, C. H. Zhang, H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system,” J. Opt. Soc. Am. B 26(7), 1423–1434 (2009).
    [CrossRef]
  3. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
    [CrossRef]
  4. R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
    [CrossRef] [PubMed]
  5. K. Totsuka, N. Kobayashi, M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [CrossRef] [PubMed]
  6. M. Tomita, K. Totsuka, R. Hanamura, T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [CrossRef]
  7. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
    [CrossRef] [PubMed]
  8. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [CrossRef] [PubMed]
  9. Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
    [CrossRef] [PubMed]
  10. Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [CrossRef]
  11. S. Darmawan, L. Y. M. Tobing, D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
    [CrossRef] [PubMed]
  12. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
    [CrossRef]
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008).
    [CrossRef] [PubMed]
  14. X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
    [CrossRef] [PubMed]
  15. X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
    [CrossRef]
  16. Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
    [CrossRef] [PubMed]
  17. L. Zhou, T. Ye, J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011).
    [CrossRef] [PubMed]
  18. X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [CrossRef] [PubMed]
  19. X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
    [CrossRef]
  20. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
    [CrossRef]
  21. Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [CrossRef]
  22. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
    [CrossRef]
  23. Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
    [CrossRef] [PubMed]
  24. Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
    [CrossRef]
  25. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  26. D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
    [CrossRef] [PubMed]
  27. G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011).
    [CrossRef] [PubMed]
  28. M. Popovic, C. Manolatou, M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [CrossRef] [PubMed]

2013 (3)

2012 (2)

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
[CrossRef] [PubMed]

I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[CrossRef]

2011 (8)

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
[CrossRef]

L. Zhou, T. Ye, J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011).
[CrossRef] [PubMed]

G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011).
[CrossRef] [PubMed]

S. Darmawan, L. Y. M. Tobing, D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
[CrossRef] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[CrossRef] [PubMed]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[CrossRef] [PubMed]

2010 (1)

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

2009 (6)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

M. Tomita, K. Totsuka, R. Hanamura, T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[CrossRef]

X. D. Yang, S. J. Li, C. H. Zhang, H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system,” J. Opt. Soc. Am. B 26(7), 1423–1434 (2009).
[CrossRef]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef] [PubMed]

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

K. Totsuka, N. Kobayashi, M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

2006 (4)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[CrossRef] [PubMed]

M. Popovic, C. Manolatou, M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

2004 (1)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[CrossRef]

Adibi, A.

Armani, A. M.

Atabaki, A. H.

Beausoleil, R. G.

Bouville, D.

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[CrossRef] [PubMed]

Cassan, E.

Chang, L.

Chen, J.

Chen, Y.-L.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Cui, J.-M.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Dai, D.

Darmawan, S.

Dong, C.-H.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Dong, P.

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Fan, H.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Fédéli, J.-M.

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[CrossRef] [PubMed]

Gong, Q.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Grosse, P.

Guo, G.-C.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Han, Z.-F.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Hanamura, R.

He, L.

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

He, S.

Hosseini, E. S.

Hua, S.

Huang, Q.

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[CrossRef] [PubMed]

Jiang, X.

Jiang, X.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Kobayashi, N.

K. Totsuka, N. Kobayashi, M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Li, B.-B.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Li, G.

Li, S. J.

Li, X.

Li, Y.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Lipson, M.

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Liu, Y.-C.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Lu, L.

Manolatou, C.

Marris-Morini, D.

Matsumoto, T.

Mei, T.

Milesi, F.

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[CrossRef]

Novikova, I.

I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[CrossRef]

Pang, W.

X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
[CrossRef] [PubMed]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

Popovic, M.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Rasigade, G.

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

Shi, Y.

Soltani, M.

Song, M.

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[CrossRef]

Sun, X.

Thylen, L.

Tobing, L. Y. M.

Tomita, M.

Totsuka, K.

Vivien, L.

Walsworth, R. L.

I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[CrossRef]

Wang, H.

Watts, M.

Willner, A. E.

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Wosinski, L.

Wu, T.

Xia, J.

Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[CrossRef] [PubMed]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Xiao, M.

Xiao, Y.

I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[CrossRef]

Xiao, Y.-F.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Xie, J.

Xu, Q.

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Yang, L.

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

Yang, Q.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Yang, X. D.

Ye, T.

Yegnanarayanan, S.

Yu, J.

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[CrossRef] [PubMed]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Zhang, C. H.

Zhang, D.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

Zhang, D. H.

Zhang, H.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

Zhang, L.

Zhang, X.

Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[CrossRef] [PubMed]

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Zhang, Y.

Zheng, C.

Zhou, L.

Zhou, X.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
[CrossRef] [PubMed]

Zhu, H.

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

Ziebell, M.

Zou, C.-L.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Zou, L.

Zou, Z.

Appl. Phys. B (1)

Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[CrossRef]

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010).
[CrossRef]

J. Mod. Opt. (1)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[CrossRef]

Laser Photon. Rev. (1)

I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[CrossRef]

Nat. Phys. (1)

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Nature (1)

R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[CrossRef]

Opt. Express (8)

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef] [PubMed]

M. Popovic, C. Manolatou, M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
[CrossRef] [PubMed]

G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011).
[CrossRef] [PubMed]

S. Darmawan, L. Y. M. Tobing, D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
[CrossRef] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[CrossRef] [PubMed]

X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (3)

X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

K. Totsuka, N. Kobayashi, M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of a two-mode MDR coupled with two bus waveguides. (b) A SEM image of the fabricated device.

Fig. 2
Fig. 2

(a) Normalized amplitude/power and (b) phase transmissions of the physical quantities St, C01, C02, T1 and T2 for our proposed structure, inset: FDTD-simulated field distribution in the MDR corresponding to the EIT-like transparency peak.

Fig. 3
Fig. 3

(a) (d) (g) Contour plots of power transmission as functions of phase detuning and coupling efficiency with Δψ/π = 0, 0.03, 0.08, respectively, (b) (e) (h) power transmissions and (c) (f) (i) phase transmissions as a function of phase detuning corresponding to the five dashed lines in the left panel.

Fig. 4
Fig. 4

Power transmissions as a function of phase detuning under various coupling efficiencies (a) and round-trip power attenuations (b) of WGMs, insets: detailed spectra of EIT-like resonance.

Fig. 5
Fig. 5

The central bandwidth and transmission of EIT-like resonance under k12 = k22 = 0.08 (solid lines) and 0.15 (dot dash lines), and the resonant bandwidth of WGM1 under k12 = 0.08 (red solid line) and 0.15 (red dot dash line), assuming α12 = 0.99 and α22 = 0.98.

Fig. 6
Fig. 6

Effective indices of WGM1 (red lines) and WGM2 (blue lines) as a function of wavelength, insets: effective index of TM0 mode (black lines) in the waveguide as a function of width at the wavelength of 1550 nm, and the Ey field profiles of WGM1, WGM2, and TM0 mode. The solid and dashed lines are for slab thicknesses of 40 nm and 80 nm, respectively.

Fig. 7
Fig. 7

(a) The measured power transmission for a gap of 180 nm, inset: experimental results (blue circles) and theoretical fitting (red line), and a SEM image. (b) The measured power transmission for a gap of 270 nm, inset: experimental results (blue circles) and theoretical fitting (red line).

Fig. 8
Fig. 8

The measured power transmission (blue circles) and theoretical fitting (red line) of the fabricated two-bus waveguides coupled MDR.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ b 0 b 1 b 2 ]=[ t 0 j k 1 j k 2 j k 1 t 1 k c j k 2 k c t 2 ][ a 0 a 1 a 2 ]
{ a 1 = b 1 α 1 e jφ 1 t 1 + b 2 ( α 1 α 2 e jφ 1 e jφ 2 ) 1/2 ( k c ) a 2 = b 2 α 2 e jφ 2 t 2 + b 1 ( α 1 α 2 e jφ 1 e jφ 2 ) 1/2 ( k c )
{ a 1 = b 1 α 1 e jφ 1 t 1 b 2 ( α 1 α 2 e jφ 1 e jφ 2 ) 1/2 ( k c ) a 2 = b 2 α 2 e jφ 2 t 2 b 1 ( α 1 α 2 e jφ 1 e jφ 2 ) 1/2 ( k c )
a 1 = b 1 α 1 e jφ 1 , a 2 = b 2 α 2 e jφ 2
S t = b 0 a 0 = t 0 j k 1 a 1 a 0 j k 2 a 2 a 0

Metrics