Abstract

Optical beams propagating through the turbulent atmospheric channel suffer from both the attenuation and phase distortion. Since future wireless networks are envisaged to be deployed in the ad hoc mesh topology, this paper presents the experimental laboratory characterization of mitigation of turbulence induced signal fades for two ad hoc scenarios. Results from measurements of the thermal structure constant along the propagation channels, changes of the coherence lengths for different turbulence regimes and the eye diagrams for partially correlated turbulences in free space optical channels are discussed. Based on these results future deployment of optical ad hoc networks can be more straightforwardly planned.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press., Boca Raton, 2012).
  2. “fSONA unveils 2.5-Gbps free-space optical systems,” in Lightwave Online, (2012).
  3. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
    [CrossRef]
  4. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
    [CrossRef]
  5. E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).
  6. M. N. Smadi, S. C. Ghosh, A. A. Farid, T. D. Todd, S. Hranilovic, “Free-space optical gateway placement in hybrid wireless mesh networks,” J. Lightwave Technol. 27(14), 2688–2697 (2009).
    [CrossRef]
  7. A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
    [CrossRef]
  8. L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, II ed. (SPIE Press, Washington, 2005).
  10. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun. 5(9), 1262–1267 (2011).
    [CrossRef]
  11. M. A. Khalighi, N. Schwartz, N. Aitamer, S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009).
    [CrossRef]
  12. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
    [CrossRef]
  13. G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
    [CrossRef]
  14. S. Kaneko, T. Hamai, K. Oba, “Evaluation of a free-space optical mesh network communication system in the Tokyo metropolitan area,” J. Opt. Netw. 1, 414–423 (2002).
  15. M. A. Kashani, M. Safari, M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Commun. Netw. 5(1), 37–47 (2013).
    [CrossRef]
  16. X. Yang, “Availability-differentiated service provisioning in free-space optical access networks,” J. Opt. Netw. 4(7), 391–399 (2005).
    [CrossRef]
  17. Z. Hu, P. Verma, J. J. Sluss., “Improved reliability of free-space optical mesh networks through topology design,” J. Opt. Netw. 7(5), 436–448 (2008).
    [CrossRef]
  18. S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
    [CrossRef]
  19. J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
    [CrossRef]
  20. S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, T. Henning, “Atmosphere-like turbulence generation with surface-etched phase-screens,” Opt. Express 14(22), 10139–10148 (2006).
    [CrossRef] [PubMed]
  21. C. Wilcox and S. Restaino, “A New Method of Generating Atmospheric Turbulence with a Liquid Crystal Spatial Light Modulator,” in New Developments in Liquid Crystals, G. V. Tkachenko, ed. (InTech, 2009), pp. 71–92.
  22. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol. 30(13), 2188–2194 (2012).
    [CrossRef]
  23. W. K. Pratt, Laser Communication Systems, I ed. (John Wiley & Sons, Inc., New York, 1969).
  24. A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, New York, 1961).
  25. A. M. Obukhov, “Structure of the temperature field in turbulent flow,” Izv. Akad. Nauk. SSSR Ser.Ser. 13, 58–96 (1949).
  26. S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
    [CrossRef]
  27. G. R. Osche, Optical Detection Theory for Laser Applications, I ed. (Wiley-Interscience, 2002).
  28. Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
    [CrossRef]
  29. M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
    [CrossRef]
  30. H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
    [CrossRef]
  31. S. Zvanovec, J. Perez, Z. Ghassemlooy, S. Rajbhandari, J. Libich, “Route diversity analyses for free-space optical wireless links within turbulent scenarios,” Opt. Express 21(6), 7641–7650 (2013).
    [CrossRef] [PubMed]
  32. Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.
  33. J. Jaeshin and W. Sunghong, “Comparative study on cooperative communications in the upper layers at ad-hoc networks,” in 2013 15th Int. Conf. Adv. Commun. Technolo. (ICACT) (2013), pp. 133–137.
  34. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
    [CrossRef]
  35. J. A. Louthain, J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
    [CrossRef] [PubMed]

2013

2012

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[CrossRef]

H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
[CrossRef]

J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol. 30(13), 2188–2194 (2012).
[CrossRef]

A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
[CrossRef]

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

2011

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun. 5(9), 1262–1267 (2011).
[CrossRef]

2010

L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).

2009

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009).
[CrossRef]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

M. N. Smadi, S. C. Ghosh, A. A. Farid, T. D. Todd, S. Hranilovic, “Free-space optical gateway placement in hybrid wireless mesh networks,” J. Lightwave Technol. 27(14), 2688–2697 (2009).
[CrossRef]

S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
[CrossRef]

2008

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

J. A. Louthain, J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
[CrossRef] [PubMed]

Z. Hu, P. Verma, J. J. Sluss., “Improved reliability of free-space optical mesh networks through topology design,” J. Opt. Netw. 7(5), 436–448 (2008).
[CrossRef]

2006

S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, T. Henning, “Atmosphere-like turbulence generation with surface-etched phase-screens,” Opt. Express 14(22), 10139–10148 (2006).
[CrossRef] [PubMed]

M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
[CrossRef]

2005

X. Yang, “Availability-differentiated service provisioning in free-space optical access networks,” J. Opt. Netw. 4(7), 391–399 (2005).
[CrossRef]

E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).

2002

1951

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[CrossRef]

1949

A. M. Obukhov, “Structure of the temperature field in turbulent flow,” Izv. Akad. Nauk. SSSR Ser.Ser. 13, 58–96 (1949).

Aitamer, N.

Aladeloba, A. O.

A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
[CrossRef]

Allen, J. I. H.

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Birnbacher, U.

E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).

Bourennane, S.

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009).
[CrossRef]

Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.

Brandner, W.

Butler, D. J.

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Corrsin, S.

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[CrossRef]

Davis, C. C.

S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
[CrossRef]

DErrico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Dordova, L.

L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).

Farid, A. A.

Frick, S.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Fuchs, C.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Gao, S.

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

Gappmair, W.

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun. 5(9), 1262–1267 (2011).
[CrossRef]

Gebhart, M.

E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).

Ghassemlooy, Z.

S. Zvanovec, J. Perez, Z. Ghassemlooy, S. Rajbhandari, J. Libich, “Route diversity analyses for free-space optical wireless links within turbulent scenarios,” Opt. Express 21(6), 7641–7650 (2013).
[CrossRef] [PubMed]

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol. 30(13), 2188–2194 (2012).
[CrossRef]

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[CrossRef]

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

Ghosh, S. C.

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Guowei, Y.

Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.

Hamai, T.

Henning, T.

Hippler, S.

Hormuth, F.

Horwath, J.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Hranilovic, S.

Hu, Z.

Ijaz, M.

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol. 30(13), 2188–2194 (2012).
[CrossRef]

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[CrossRef]

Kaneko, S.

Karagiannidis, G. K.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

Kashani, M. A.

Khalighi, M.

Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.

Khalighi, M. A.

Khalighi, M.-A.

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

Le Minh, H.

Leitgeb, E.

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).

Li, J. T.

M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
[CrossRef]

Libich, J.

S. Zvanovec, J. Perez, Z. Ghassemlooy, S. Rajbhandari, J. Libich, “Route diversity analyses for free-space optical wireless links within turbulent scenarios,” Opt. Express 21(6), 7641–7650 (2013).
[CrossRef] [PubMed]

J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
[CrossRef]

Llorca, J.

S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
[CrossRef]

LoPresti, P. G.

H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
[CrossRef]

Louthain, J. A.

Matsumoto, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Milner, S. D.

S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
[CrossRef]

Minh, H. L.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[CrossRef]

Moll, F.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Moradi, H.

H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
[CrossRef]

Mudroch, M.

J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
[CrossRef]

Nauerth, S.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Oba, K.

Obukhov, A. M.

A. M. Obukhov, “Structure of the temperature field in turbulent flow,” Izv. Akad. Nauk. SSSR Ser.Ser. 13, 58–96 (1949).

Perez, J.

Phillips, A. J.

A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
[CrossRef]

Popoola, W. O.

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

Rajbhandari, S.

Rau, M.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Refai, H. H.

H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
[CrossRef]

Safari, M.

Sandalidis, H. G.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

Schmidt, J. D.

Schwartz, N.

Sluss, J. J.

Smadi, M. N.

Todd, T. D.

Tsiftsis, T. A.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

Uysal, M.

M. A. Kashani, M. Safari, M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Commun. Netw. 5(1), 37–47 (2013).
[CrossRef]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
[CrossRef]

Verma, P.

Weinfurter, H.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Wilfert, O.

L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).

Woolfson, M. S.

A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
[CrossRef]

Yang, G.

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

Yang, X.

Yu, M.

M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
[CrossRef]

Zvanovec, S.

S. Zvanovec, J. Perez, Z. Ghassemlooy, S. Rajbhandari, J. Libich, “Route diversity analyses for free-space optical wireless links within turbulent scenarios,” Opt. Express 21(6), 7641–7650 (2013).
[CrossRef] [PubMed]

J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
[CrossRef]

IEEE Circuits Syst. Mag.

S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009).
[CrossRef]

IEEE Commun. Lett.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[CrossRef]

IEEE J. Sel. Areas Comm.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[CrossRef]

IEEE Trans. Wirel. Comm.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009).
[CrossRef]

M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006).
[CrossRef]

IEEE Wireless Commun. Lett.

G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012).
[CrossRef]

IET Commun.

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun. 5(9), 1262–1267 (2011).
[CrossRef]

IET Optoelectron.

A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012).
[CrossRef]

H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012).
[CrossRef]

Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008).
[CrossRef]

Izv. Akad. Nauk. SSSR Ser.Ser.

A. M. Obukhov, “Structure of the temperature field in turbulent flow,” Izv. Akad. Nauk. SSSR Ser.Ser. 13, 58–96 (1949).

J. Appl. Phys.

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Fiber Commun. Rep.

E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).

J. Opt. Netw.

Nat. Photonics

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[CrossRef]

Opt. Express

Proc. SPIE

J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012).
[CrossRef]

Radioengineering

L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).

Other

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, II ed. (SPIE Press, Washington, 2005).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press., Boca Raton, 2012).

“fSONA unveils 2.5-Gbps free-space optical systems,” in Lightwave Online, (2012).

W. K. Pratt, Laser Communication Systems, I ed. (John Wiley & Sons, Inc., New York, 1969).

A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, New York, 1961).

G. R. Osche, Optical Detection Theory for Laser Applications, I ed. (Wiley-Interscience, 2002).

C. Wilcox and S. Restaino, “A New Method of Generating Atmospheric Turbulence with a Liquid Crystal Spatial Light Modulator,” in New Developments in Liquid Crystals, G. V. Tkachenko, ed. (InTech, 2009), pp. 71–92.

Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.

J. Jaeshin and W. Sunghong, “Comparative study on cooperative communications in the upper layers at ad-hoc networks,” in 2013 15th Int. Conf. Adv. Commun. Technolo. (ICACT) (2013), pp. 133–137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Mesh topology and the network path equivalent to the FSO path under study (dashed line).

Fig. 2
Fig. 2

(a) Block diagram of the laboratory turbulence chamber implemented for measurements and (b) annotated photograph of the atmospheric chamber used and the laboratory set-up, main components underlined.

Fig. 3
Fig. 3

Block diagrams of beam and turbulence interaction as measured in experimental laboratory for: (a) split beam, and (b) multiple channels FSO system

Fig. 4
Fig. 4

Aperture averaging derived for 5.5 m channel (red curves) and 500 m channel (blue curves) for weak and moderate turbulence

Fig. 5
Fig. 5

Derived empirical histograms of spatial coherence distance determined from measured CT2 profiles for cases: (a) similar Cn2 in channels and (b) one order different Cn2 in the channels

Fig. 6
Fig. 6

Measured dependence of Rytov variance in both channels and the link diversity gain against Cn2 measured in the channel 1

Fig. 7
Fig. 7

Eye diagrams for the initial turbulence scenario for: (a) channel 1 (Cn2 = 10−13 m-2/3), and (b) channel 2 received signals

Fig. 8
Fig. 8

Eye diagrams for final turbulence scenario for: (a) channel 1 (Cn2 = 10−11 m-2/3), and (b) received signals in channel 2

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C n 2 = ( 86× 10 6 P as T e ) 2 C T 2 ,at λ=850nm,
D T = ( T 1 T 2 ) 2 ={ C T 2 l 0 4 /3 L p 2 C T 2 L p 2 /3 for 0< L p < l 0 for l 0 < L p < L 0 ,
f(I)= 2 ( αβ ) ( α+β ) 2 Γ( α )Γ( β ) I α+β 2 1 K αβ ( 2 αβI ),I>0,
f(I)= 1 2π σ I I { ( ln(I/ I 0 )+ σ I 2 /2 ) 2 2 σ I 2 },I>0,
p= Γ( N+1 2 ) σ I Nπ Γ( N 20 ) [ N+ ( I I 0 0.1 σ I ) 2 N ],
p( r )= α μ μ r αμ1 r ^ αμ Γ( μ ) exp( μ r α r ^ α ), r<0,
f( x| k,μ,σ )=( 1 σ )exp( ( 1+k ( xμ ) σ ) 1 k ) ( 1+k ( xμ ) σ ) 1 1 k ,
ρ 0 = [ 1.45 k 2 0 L p C n 2 ( x )dx ] 3/5 .

Metrics