Abstract

We investigate the tunability and strength of the localized surface plasmons of binary metal-in-metal core-shells. Ellipsoids are used as an analytical model to show how the fill factor continuously tunes a hybridized mode between those of the constituents, suggesting the use of metal combinations with widely differing plasma frequencies for broad tunability. A quasistatic eigenmode method is used separate geometric and material parameters to facilitate prediction of hybridized dipole modes in arbitrary shapes. A modified ellipsoid model is found to adequately describe the symmetric dipole-dipole resonance of well-rounded cuboids.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Arnold, M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
    [CrossRef] [PubMed]
  2. M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
    [CrossRef] [PubMed]
  3. M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
    [CrossRef] [PubMed]
  4. M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011).
    [CrossRef] [PubMed]
  5. L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).
  6. P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
    [CrossRef]
  7. M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
    [CrossRef]
  8. X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
    [CrossRef] [PubMed]
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  10. D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
    [CrossRef]
  11. C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
    [CrossRef] [PubMed]
  12. J. Zhu, “Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires,” Nanoscale Res. Lett. 4(9), 977–981 (2009).
    [CrossRef] [PubMed]
  13. R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
    [CrossRef] [PubMed]
  14. L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
    [CrossRef]
  15. G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
    [CrossRef] [PubMed]
  16. L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
    [CrossRef] [PubMed]
  17. U. K. Chettiar, N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012).
    [CrossRef] [PubMed]
  18. Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
    [CrossRef]
  19. M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [CrossRef]
  20. F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
    [CrossRef]
  21. I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
    [CrossRef]
  22. E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
    [CrossRef] [PubMed]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  24. C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011).
    [CrossRef] [PubMed]
  25. M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
    [CrossRef] [PubMed]
  26. M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
    [CrossRef] [PubMed]
  27. D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007).
    [CrossRef] [PubMed]
  28. O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).
  29. I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007).
    [CrossRef]
  30. J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook (CRC, 2001).
  31. H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [CrossRef] [PubMed]

2012 (5)

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

U. K. Chettiar, N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012).
[CrossRef] [PubMed]

2011 (3)

C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011).
[CrossRef] [PubMed]

L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
[CrossRef]

M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

2009 (5)

M. D. Arnold, M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[CrossRef] [PubMed]

C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
[CrossRef] [PubMed]

J. Zhu, “Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires,” Nanoscale Res. Lett. 4(9), 977–981 (2009).
[CrossRef] [PubMed]

2008 (1)

D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
[CrossRef]

2007 (2)

D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007).
[CrossRef] [PubMed]

I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007).
[CrossRef]

2006 (1)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

2005 (2)

X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

2004 (1)

E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
[CrossRef]

1997 (1)

F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[CrossRef]

1993 (1)

P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
[CrossRef]

1989 (1)

O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).

Aizpurua, J.

F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[CrossRef]

Arnold, M. D.

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Bar-Sadan, M.

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

M. D. Arnold, M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
[CrossRef] [PubMed]

Brandl, D. W.

D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Chen, H.

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Chettiar, U. K.

Chuntonov, L.

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

Cortie, M. B.

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

Engheta, N.

Feng, L.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Feng, O. Y.

O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).

Ford, M. J.

M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Gao, G.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

García de Abajo, F.

F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[CrossRef]

Giersig, M.

P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
[CrossRef]

Gong, Q. H.

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

Gu, Y.

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

Hafner, C.

L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Haran, G.

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

Harris, N.

Hartland, G. V.

X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
[CrossRef] [PubMed]

Henglein, A.

P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
[CrossRef]

Houben, L.

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

Huang, P.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Isaacson, M.

O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).

Jiang, R.

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Lee, C.

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

Leuchtmann, P.

L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
[CrossRef]

Li, J.

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

Li, Q.

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Liu, F. G.

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

Liu, X. J.

D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
[CrossRef]

Luo, T.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Martin, O. J. F.

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

Mayergoyz, I. D.

I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

McDonagh, A. M.

M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
[CrossRef]

Mulvaney, P.

P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
[CrossRef]

Niidome, Y.

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

Noguez, C.

C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011).
[CrossRef] [PubMed]

C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
[CrossRef] [PubMed]

Nordlander, P.

D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

Park, G.

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

Raguin, L.

L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
[CrossRef]

Román-Velázquez, C. E.

C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011).
[CrossRef] [PubMed]

C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
[CrossRef] [PubMed]

Seo, D.

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

Shao, L.

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Song, H.

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

Srnova-Sloufova, I.

M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
[CrossRef]

Vlckova, B.

M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Wang, J.

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Wang, K.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Wang, X.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
[CrossRef] [PubMed]

Wu, D. J.

D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
[CrossRef]

Xu, X. D.

D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
[CrossRef]

Zhang, C.

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Zhang, J. Z.

C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
[CrossRef] [PubMed]

Zhang, Z.

I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007).
[CrossRef]

Zhang, Z. Y.

I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, “Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires,” Nanoscale Res. Lett. 4(9), 977–981 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

IEEE Trans. Magn. (1)

I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007).
[CrossRef]

J. Appl. Phys. (1)

Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010).
[CrossRef]

J. Chem. Phys. (4)

M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002).
[CrossRef]

E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004).
[CrossRef] [PubMed]

C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011).
[CrossRef] [PubMed]

D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007).
[CrossRef] [PubMed]

J. Comput. Theor. Nanosci. (1)

L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011).
[CrossRef]

J. Phys. Chem. (1)

P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993).
[CrossRef]

J. Phys. Chem. A (1)

C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

J. Phys. Condens. Matter (2)

M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009).
[CrossRef] [PubMed]

Langmuir (2)

G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[CrossRef] [PubMed]

M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[CrossRef] [PubMed]

Nano Biomed. Eng. (1)

L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).

Nano Lett. (2)

L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

J. Zhu, “Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires,” Nanoscale Res. Lett. 4(9), 977–981 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Philos. Mag. B (1)

O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).

Phys. Rev. B (2)

F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Solid State Commun. (1)

D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008).
[CrossRef]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook (CRC, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optimum fill factor for spherical core-shells (cyan f = 0, magenta f = 1) predicted by Eq. (2) as a function of the core and shell permittivities. Symmetric modes are labelled + + , all others are antisymmetric. Labels CSzd are bounds listed in Table 1. The black lines are K-Al core-shell (solid), and Al-K core-shell (dotted). The black dots are those predicted by Eq. (2) when f = 0, 1/4, 1/2, 3/4, 1.

Fig. 2
Fig. 2

Absorption maxima of (a) K-Al and (b) Al-K spherical core-shells in free-space. The colored spectra are Eq. (1), at fill factors equally spaced from f = 0 (cyan) to f = 1 (magenta), the dots are the corresponding discrete peaks from Eqs. (2) and (3), and the heavy black line is the path of peaks predicted by Eq. (3). Labels CSzd are bounds listed in Table 1, and the paths are the same as those in Fig. 1.

Fig. 3
Fig. 3

Resonant electric dipole fields of (a) K-Al and (b) Al-K core-shells. The fields are calculated at resonance on surfaces, and all are directed normal to the surfaces and parallel to the direction of the excitation field. This is the maximum field on most surfaces except for inside the K-Al shell. The external surface (black), inner and outer shell surfaces (dotted), and core fields are shown. These are consistent with equivalent surface charges, which are symmetric in (a) and antisymmetric in (b). The anti-symmetry is stronger in the lower frequency mode.

Fig. 4
Fig. 4

Resonances of prolate spheroid core-shells, outer aspect ratio 2 with confocal core, excited perpendicular to the rotation axis. The colored lines were calculated at fill factors f = 0, ¼, ½, ¾, 1 as indicated by the overlaid sketches. These are the full numerical results and have been verified against Eq. (1). The resonance predicted by earlier equations is overlaid in black, using depolarization fixed to that of the outer. The black dots are the discrete maxima predicted by Eqs. (2) and (3) using the same fill-factors as the colored lines. The black line is the path of the maxima predicted by Eq. (3). (a) is K in Al, (b) is Al in K.

Fig. 5
Fig. 5

Resonances of prolate spheroid core-shells of aspect ratio 2 excited perpendicular to the rotation axis, at various fill factors. The colored lines are full numerical results for the sequence f = 0, 1/4, 1/2, 3/4, 1, as indicated by the overlaid sketches. The black dots are the corresponding peaks predicted by Eqs. (2) and (3). The black line is the path of the peaks predicted by Eq. (3). (a) is K in Al, (b) is Al in K.

Fig. 6
Fig. 6

Resonance maps in dual permittivity space (imaginary permittivities fixed at 0.1), for self-similar spheroid core-shells with fill factor f = 0.5, aspect ratio 2 and 0.5, and polarization perpendicular and parallel to the axis of revolution: (a) prolate perpendicular (b) prolate parallel (c) oblate perpendicular (d) oblate parallel. Bright colors indicate resonance, blue lines are the dipole-dipole prediction, solid black line is K-in-Al and dashed black line is Al-in-K.

Fig. 7
Fig. 7

Resonance parameters of cuboids with roundness exponent p = 0.5. Internal interaction parameters are in (a) and external coupling strengths are in (b). Blue and green are the core and shell respectively, red is the core-shell coupling product, and cyan is the special cross-coupling term given by Eq. (11). Markers are the numerical result; the lines are a generalization of the ellipsoid model where the relevant parameters of the outer shape have been substituted.

Fig. 8
Fig. 8

Resonances of cuboids with roundness exponent p = 0.5. The analytic ellipsoid model with numerical coupling factors is overlaid in black. (a) is K in Al, (b) is Al in K.

Fig. 9
Fig. 9

Resonance map in dual permittivity space (imaginary permittivities fixed at 0.1), for moderately rounded cuboid core-shell with fill-factor f = 0.5 and roundness p = 0.5. Bright colors indicate resonance, blue lines are the dipole-dipole prediction, solid black line is K-in-Al and dashed black line is Al-in-K.

Tables (1)

Tables Icon

Table 1 Limiting cases for confocal core-shell resonances

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α V = ( ε s ε b )( ε s + L c ( ε c ε s ) )+f( ε s + L s ( ε b ε s ) )( ε c ε s ) ( ε b + L s ( ε s ε b ) )( ε s + L c ( ε c ε s ) )+f L s (1 L s )( ε s ε b )( ε c ε s ) ,
f peak ( ε b + L s ( ε s b ) )( ε s + L c ( ε c s ) ) ( ε s ε b )( ε c ε s ) L s (1 L s ) .
α peak iV ~ A ε s ''S+ ε c ''C A= ε b ε s ( ε s + L c ( ε c ε s ) )( ε c ε s ) L s 1 (1 L s ) 1 C= ε s ( ε b + L s ( ε s ε b ) )( ε s ε b ) S= ε b ( ε b ε c ε s 2 + ( ε c ε s ) 2 L c ) ε c ( ε b ε s ) 2 L s
α=X [ γΩ ] 1 E
γ I = 1 2 ε c + ε s ε c ε s γ O = 1 2 ε s + ε b ε s ε b
Q I Γ I = Ω I Q I .
Q=[ Q I Q o ],
α= C II ( γ O Ω OO )+ C OI Ω OI + C IO Ω IO + C OO ( γ I Ω II ) ( γ O Ω OO )( γ I Ω II ) Ω OI Ω IO
C IO = X I E O .
C II =fV C OO =V
C OI Ω OI + C IO Ω IO =fV(12 L s )
Ω I =1/2 L c Ω O =1/2 L s Ω OI Ω IO =f L s (1 L s )

Metrics