Abstract

We propose a novel elastic optical path network where each specific bitrate signal uses its own dedicated fixed grid and one edge of its frequency grid is anchored at a specific frequency. Numerical evaluations using various bitrate signal patterns and network topologies show that the network proposal can almost match the performance of conventional flexible grid networks, while greatly mitigating the hardware requirements: it allows the use of the tunable filters for the fixed grid systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sato, Advances in Transport Network Technologies – Photonic Networks, ATM and SDH (Artech House, 1996).
  2. T. S. El-Bawab, Optical Switching (Springer, 2006).
  3. K. Sato, H. Hasegawa, “Optical networking technologies that will create future bandwidth-abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
    [CrossRef]
  4. A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. W. Gannett, G. Kim, J. Klincewicz, T. Kwon, G. Li, P. Magill, J. M. Simmons, R. A. Skoog, J. Strand, A. Lehmen, B. J. Wilson, S. L. Woodward, D. Xu, “Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks,” J. Opt. Commun. Netw. 4(1), 1–14 (2012).
    [CrossRef]
  5. M. D. Feuer and S. L. Woodward, “Advanced ROADM networks,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper NW3F.3.
    [CrossRef]
  6. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper Mo.2.D.2.
    [CrossRef]
  7. F. Naruse, Y. Yamada, H. Hasegawa, K. Sato, “Evaluations of OXC hardware scale and Network Resource Requirements of Different Optical Path Add/Drop Ratio Restriction Schemes,” J. Opt. Commun. Netw. 4(11), B26–B34 (2012).
    [CrossRef]
  8. Y. Iwai, H. Hasegawa, K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
    [CrossRef] [PubMed]
  9. I. T. U.-T. Recommendations, “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (2012), http://www.itu.int/rec/T-REC-G.694.1/
  10. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [CrossRef]
  11. O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
    [CrossRef]
  12. S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
    [CrossRef]
  13. A. Klekamp and U. Gebhard, “Benefits for mixed-line-rate (MLR) and elastic networks using flexible frequency grids,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.1.
    [CrossRef]
  14. W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  15. E. Palkopoulou, G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, I. Tomkos, “Nyquist-WDM-based flexible optical networks: exploring physical layer design parameters,” J. Lightwave Technol. 31(14), 2332–2339 (2013).
    [CrossRef]
  16. B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMU3.pdf.
    [CrossRef]
  17. T. Takagi, H. Hasegawa, K. Sato, Y. Sone, B. Kozicki, A. Hirano, and M. Jinno, “Dynamic routing and frequency slot assignment for elastic optical path networks that adopt distance adaptive modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI7.
    [CrossRef]
  18. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Spectrally/bitrate flexible optical network planning,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper We.8.D.3.
  19. T. Zami, “What is the benefit of elastic superchannel for WDM network? ” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.1.
  20. K. Sato, “Recent developments in and challenges of elastic optical path networking,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.K.1.
    [CrossRef]
  21. S. L. Woodward, M. D. Feuer, “Benefits and requirements of flexible-grid ROADMs and networks,” J. Opt. Commun. Netw. 5(10), A19–A27 (2013).
    [CrossRef]
  22. P. Magill, presented at the workshop on spectrally/bit-rate flexible optical network design and operation, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011).
  23. T. Niwa, H. Hasegawa, K. Sato, T. Watanabe, H. Takahashi, and S. Soma, “Compact integrated tunable filter utilizing AWG routing function and small switches,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OW1C.2.
    [CrossRef]
  24. Z. Shen, H. Hasegawa, K. Sato, T. Tanaka, and A. Hirano, “A novel semi-flexible grid optical path network that utilizes aligned frequency slot arrangement,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.2.
  25. G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: How much can gridless help contentionless?” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI3.
    [CrossRef]
  26. A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
    [CrossRef]
  27. R. Inkret, A. Kuchar, and B. Mikac, Advanced infrastructure for photonic networks – extended final report of COST 266 action (Faculty of Electrical Engineering and Computing, University of Zagreb, 2003), Chap.1.
  28. T. Zami, “Illustration of the best synergy between grooming of static traffic and elastic spectral efficiency in the WDM networks,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.3.
    [CrossRef]

2013 (3)

2012 (3)

2010 (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

2009 (2)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

K. Sato, H. Hasegawa, “Optical networking technologies that will create future bandwidth-abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
[CrossRef]

2008 (2)

W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[CrossRef] [PubMed]

A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
[CrossRef]

Allasia, A.

A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
[CrossRef]

Bao, H.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Bosco, G.

Brizi, V.

A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
[CrossRef]

Carena, A.

Chiu, A. L.

Choudhury, G.

Clapp, G.

Doverspike, R.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Feuer, M.

Feuer, M. D.

Gannett, J. W.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Hasegawa, H.

Iwai, Y.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Kim, G.

Klincewicz, J.

Klonidis, D.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Kwon, T.

Lehmen, A.

Li, G.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Magill, P.

Matuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Naruse, F.

Palkopoulou, E.

Poggiolini, P.

Potenza, M.

A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
[CrossRef]

Sato, K.

Shieh, W.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Simmons, J. M.

Skoog, R. A.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Strand, J.

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tang, Y.

Tomkos, I.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Wilson, B. J.

Woodward, S. L.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Xu, D.

Yamada, Y.

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

IEEE Commun. Mag. (3)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

O. Gerstel, M. Jinno, A. Lord, S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

J. Fiber and Integrated Optics. (1)

A. Allasia, V. Brizi, M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics. 27(4), 183–193 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (4)

Opt. Express (2)

Other (17)

I. T. U.-T. Recommendations, “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (2012), http://www.itu.int/rec/T-REC-G.694.1/

K. Sato, Advances in Transport Network Technologies – Photonic Networks, ATM and SDH (Artech House, 1996).

T. S. El-Bawab, Optical Switching (Springer, 2006).

M. D. Feuer and S. L. Woodward, “Advanced ROADM networks,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper NW3F.3.
[CrossRef]

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper Mo.2.D.2.
[CrossRef]

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMU3.pdf.
[CrossRef]

T. Takagi, H. Hasegawa, K. Sato, Y. Sone, B. Kozicki, A. Hirano, and M. Jinno, “Dynamic routing and frequency slot assignment for elastic optical path networks that adopt distance adaptive modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI7.
[CrossRef]

K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Spectrally/bitrate flexible optical network planning,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper We.8.D.3.

T. Zami, “What is the benefit of elastic superchannel for WDM network? ” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.1.

K. Sato, “Recent developments in and challenges of elastic optical path networking,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.K.1.
[CrossRef]

A. Klekamp and U. Gebhard, “Benefits for mixed-line-rate (MLR) and elastic networks using flexible frequency grids,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.1.
[CrossRef]

R. Inkret, A. Kuchar, and B. Mikac, Advanced infrastructure for photonic networks – extended final report of COST 266 action (Faculty of Electrical Engineering and Computing, University of Zagreb, 2003), Chap.1.

T. Zami, “Illustration of the best synergy between grooming of static traffic and elastic spectral efficiency in the WDM networks,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.3.
[CrossRef]

P. Magill, presented at the workshop on spectrally/bit-rate flexible optical network design and operation, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011).

T. Niwa, H. Hasegawa, K. Sato, T. Watanabe, H. Takahashi, and S. Soma, “Compact integrated tunable filter utilizing AWG routing function and small switches,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OW1C.2.
[CrossRef]

Z. Shen, H. Hasegawa, K. Sato, T. Tanaka, and A. Hirano, “A novel semi-flexible grid optical path network that utilizes aligned frequency slot arrangement,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.2.

G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: How much can gridless help contentionless?” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Comparison of (a) ITU-T fixed grid, (b) flexible grid, and (c) semi-flexible grid.

Fig. 2
Fig. 2

Prototype of a cost-effective tunable filter for fixed grid network [23].

Fig. 3
Fig. 3

Example model for (a) proposed semi-flexible grid and (b) conventional flexible grid ROADMs with C/D or C/D/C function.

Fig. 4
Fig. 4

Network topologies.

Fig. 5
Fig. 5

Comparison of accepted traffic volume between different flexible grid optical path network algorithms for different networks with connection demand ratio (a) R1 and (b) R2.

Fig. 6
Fig. 6

Comparison of blocking ratio for P1 for 5x5 polygrid network with connection demand ratio (a) R1 and (b) R2.

Fig. 7
Fig. 7

Comparison of blocking ratio for P1 for COST266 pan European network with connection demand ratio (a) R1 and (b) R2.

Fig. 8
Fig. 8

Performance comparison for different numbers of traffic distribution patterns for (a) flexible grid and (b) semi-flexible grid networks, tested using the same parameter values as for Fig. 6(a).

Fig. 9
Fig. 9

Comparison of accepted traffic volume between Semi-flex and Flex for different networks with connection demand ratio (a) R1 and (b) R2.

Fig. 10
Fig. 10

Comparison of blocking distribution per bitrate signal for Semi-flex and Flex. The connection demand ratio is (a) R1 and (b) R2 for 5x5 polygrid network.

Fig. 11
Fig. 11

Comparison of blocking distribution per bitrate signal for Semi-flex and Flex. The connection demand ratio is (a) R1 and (b) R2 for the COST266 pan European network.

Fig. 12
Fig. 12

Comparison of blocking bandwidth ratio for Semi-flex and Flex for different networks with connection demand ratio (a) R1 and (b) R2

Tables (2)

Tables Icon

Table 1 Four different slot widths allocated in terms of m; multiple of 12.5 GHz for different bitrate signals

Tables Icon

Table 2 Simulation results

Metrics