Abstract

We discuss thin optical structures that allow chromatic aberrations to be avoided in the THz domain. The paper contains the theoretical considerations, computer modeling and experimental evaluation of the high order kinoform diffractive elements in the THz range. According to the obtained results application of the high order kinoforms enables broadband operation in the THz range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer 2009).
  3. F. F. Sizov, A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34(5), 278–347 (2010).
    [CrossRef]
  4. E. Bründermann, H.-W. Hübers, and M. Kimmitt, THz techniques (Springer 2012).
  5. N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
    [CrossRef]
  6. A. Rogalski, “Semiconductor detectors and focal plane arrays for far-infrared imaging,” Opto-Electron. Rev. 21(4), 406–426 (2013).
    [CrossRef]
  7. M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
    [CrossRef]
  8. A. W. Lee, Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
    [CrossRef] [PubMed]
  9. H. Zhong, A. Redo-Sanchez, X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
    [CrossRef] [PubMed]
  10. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
    [CrossRef] [PubMed]
  11. P. Y. Han, X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
    [CrossRef]
  12. A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
    [CrossRef] [PubMed]
  13. I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
    [CrossRef]
  14. E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
    [CrossRef]
  15. M. Nazarov, J.-L. Coutaz, “Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1054–1073 (2011).
    [CrossRef]
  16. M. Naftaly, R. Dudley, “Terahertz reflectivities of metal-coated mirrors,” Appl. Opt. 50(19), 3201–3204 (2011).
    [CrossRef] [PubMed]
  17. J. Lloyd-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millimeter, Terahertz, Waves 33(9), 871–925 (2012).
    [CrossRef]
  18. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  19. M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
    [CrossRef]
  20. E. D. Walsby, J. Alton, C. Worrall, H. E. Beere, D. A. Ritchie, D. R. Cumming, “Imprinted diffractive optics for terahertz radiation,” Opt. Lett. 32(9), 1141–1143 (2007).
    [CrossRef] [PubMed]
  21. B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
    [CrossRef]
  22. J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
    [CrossRef]
  23. L. N. Hazra, C. A. Delsile, “Higher order kinoform lenses: diffraction efficiency and aberrational properties,” Opt. Eng. 36(5), 1500–15007 (1997).
    [CrossRef]
  24. M. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, J. L. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett. 37(12), 2214–2216 (2012).
    [CrossRef] [PubMed]
  25. D. W. Sweeney, G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
    [CrossRef] [PubMed]
  26. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform Lenses,” Appl. Opt. 9(8), 1883–1887 (1970).
    [PubMed]
  27. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
    [CrossRef]
  28. M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
    [CrossRef]
  29. Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
    [CrossRef]

2013 (2)

A. Rogalski, “Semiconductor detectors and focal plane arrays for far-infrared imaging,” Opto-Electron. Rev. 21(4), 406–426 (2013).
[CrossRef]

E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
[CrossRef]

2012 (3)

J. Lloyd-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millimeter, Terahertz, Waves 33(9), 871–925 (2012).
[CrossRef]

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, J. L. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett. 37(12), 2214–2216 (2012).
[CrossRef] [PubMed]

2011 (4)

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

M. Nazarov, J.-L. Coutaz, “Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1054–1073 (2011).
[CrossRef]

M. Naftaly, R. Dudley, “Terahertz reflectivities of metal-coated mirrors,” Appl. Opt. 50(19), 3201–3204 (2011).
[CrossRef] [PubMed]

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

2010 (3)

F. F. Sizov, A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34(5), 278–347 (2010).
[CrossRef]

N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[CrossRef]

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

2009 (1)

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

2005 (1)

2003 (1)

M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

2001 (1)

P. Y. Han, X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[CrossRef]

1997 (1)

L. N. Hazra, C. A. Delsile, “Higher order kinoform lenses: diffraction efficiency and aberrational properties,” Opt. Eng. 36(5), 1500–15007 (1997).
[CrossRef]

1996 (1)

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

1995 (2)

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

D. W. Sweeney, G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
[CrossRef] [PubMed]

1990 (1)

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
[CrossRef]

1985 (1)

1970 (1)

Akai, R.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Alexander, R. W.

Alton, J.

Angell, D. K.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
[CrossRef]

Ashida, M.

E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
[CrossRef]

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Bastiaans, G. J.

Beere, H. E.

Bell, R. J.

Bito, M.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Burnett, A. D.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Chen, J.

Chen, Y.

Cherkassky, V. S.

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Choporova, Y. Y.

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Coutaz, J. L.

Coutaz, J.-L.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Nazarov, J.-L. Coutaz, “Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1054–1073 (2011).
[CrossRef]

Cumming, D. R.

Cunningham, J. E.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Davies, A. G.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Delsile, C. A.

L. N. Hazra, C. A. Delsile, “Higher order kinoform lenses: diffraction efficiency and aberrational properties,” Opt. Eng. 36(5), 1500–15007 (1997).
[CrossRef]

Dem’yanenko, M. A.

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

Dudley, R.

Edwards, H. G. M.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Esaev, D. G.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Fan, W.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Fomin, B. I.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

Garet, F.

Gerasimov, V. V.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Gomez-Reino, C.

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

Górecki, M.

M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Han, P. Y.

P. Y. Han, X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[CrossRef]

Hargreaves, M. D.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Hazra, L. N.

L. N. Hazra, C. A. Delsile, “Higher order kinoform lenses: diffraction efficiency and aberrational properties,” Opt. Eng. 36(5), 1500–15007 (1997).
[CrossRef]

Hérault, E.

Hirsch, P. M.

Hu, Q.

Ito, H.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Jaroszewicz, Z.

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

Jeon, T.-I.

J. Lloyd-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millimeter, Terahertz, Waves 33(9), 871–925 (2012).
[CrossRef]

Jordan, J. A.

Katayama, I.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Knyazev, B. A.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Kolodziejczyk, A.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

Lee, A. W.

Lesem, L. B.

Linfield, E. H.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Lloyd-Hughes, J.

J. Lloyd-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millimeter, Terahertz, Waves 33(9), 871–925 (2012).
[CrossRef]

Long, L. L.

Makowski, M.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, J. L. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett. 37(12), 2214–2216 (2012).
[CrossRef] [PubMed]

Marchishin, I. V.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

Marron, J. C.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
[CrossRef]

Matsubara, E.

E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
[CrossRef]

Miyamoto, K.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Munshi, T.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Naftaly, M.

Nagai, M.

E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
[CrossRef]

Nazarov, M.

M. Nazarov, J.-L. Coutaz, “Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1054–1073 (2011).
[CrossRef]

Oda, N.

N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[CrossRef]

Ordal, M. A.

Ovsyuk, V. N.

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

Prokopowicz, C.

M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Querry, M. R.

Redo-Sanchez, A.

Ritchie, D. A.

Rogalski, A.

A. Rogalski, “Semiconductor detectors and focal plane arrays for far-infrared imaging,” Opto-Electron. Rev. 21(4), 406–426 (2013).
[CrossRef]

F. F. Sizov, A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34(5), 278–347 (2010).
[CrossRef]

Shimosato, H.

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

Siemion, A.

Sizov, F. F.

F. F. Sizov, A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34(5), 278–347 (2010).
[CrossRef]

Sommargren, G. E.

Suszek, J.

M. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, J. L. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett. 37(12), 2214–2216 (2012).
[CrossRef] [PubMed]

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

Sweeney, D. W.

Sypek, M.

M. Sypek, M. Makowski, E. Hérault, A. Siemion, A. Siemion, J. Suszek, F. Garet, J. L. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett. 37(12), 2214–2216 (2012).
[CrossRef] [PubMed]

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

Tai, A. M.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Upadhya, P. C.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Van Rooy, D. L.

Vlasenko, M. G.

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

Walsby, E. D.

Worrall, C.

Zhang, X.-C.

Zhao, H.

Zhong, H.

Analyst (Lond.) (1)

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, M. Ashida, “Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Appl. Phys. Lett. 97(2), 021105 (2010).
[CrossRef]

C. R. Phys. (1)

N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[CrossRef]

J. Infrared Millimeter, Terahertz, Waves (3)

J. Lloyd-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millimeter, Terahertz, Waves 33(9), 871–925 (2012).
[CrossRef]

M. Nazarov, J.-L. Coutaz, “Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1054–1073 (2011).
[CrossRef]

B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Millimeter, Terahertz, Waves 32(10), 1207–1222 (2011).
[CrossRef]

J. Mod. Opt. (1)

Z. Jaroszewicz, A. Kołodziejczyk, M. Sypek, C. Gomez-Reino, “Non-paraxial analytical solution for the generation of focal curves,” J. Mod. Opt. 43(3), 617–637 (1996).
[CrossRef]

J. Opt. Soc. Am. B. (1)

E. Matsubara, M. Nagai, M. Ashida, “Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses,” J. Opt. Soc. Am. B. 30(6), 1627–1630 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

P. Y. Han, X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Commun. (1)

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

Opt. Eng. (2)

M. Sypek, C. Prokopowicz, M. Górecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[CrossRef]

L. N. Hazra, C. A. Delsile, “Higher order kinoform lenses: diffraction efficiency and aberrational properties,” Opt. Eng. 36(5), 1500–15007 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

A. Rogalski, “Semiconductor detectors and focal plane arrays for far-infrared imaging,” Opto-Electron. Rev. 21(4), 406–426 (2013).
[CrossRef]

Optoelectron. Instrum. Data Process. (1)

M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev, V. V. Gerasimov, “Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range,” Optoelectron. Instrum. Data Process. 47(5), 508–512 (2011).
[CrossRef]

Proc. SPIE (2)

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, J. Suszek, “Aberrations of the large aperture attenuating THz lenses,” Proc. SPIE 8261, 826110 (2012).
[CrossRef]

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-Order Kinoforms,” Proc. SPIE 1211, 62–66 (1990).
[CrossRef]

Prog. Quantum Electron. (1)

F. F. Sizov, A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34(5), 278–347 (2010).
[CrossRef]

Other (2)

E. Bründermann, H.-W. Hübers, and M. Kimmitt, THz techniques (Springer 2012).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Different schemes for a converging lens: a) classical plano-convex lens, b) 1st order kinoform, c) HOK (p>>1).

Fig. 2
Fig. 2

Output radiation (PSF – Point Spread Function spots) in the designed focal plane. Squares indicate the area of the assumed detector which is 5 × 5 mm2. The number m’ defines the wavelength λ’ according to the equation λ’ = /m’.

Fig. 3
Fig. 3

Scheme of the experimental setup.

Fig. 4
Fig. 4

Output radiation PSF spots in the focal plane. Each image size is 25 x 25 mm. The number m’ is related to the experimental wavelength λ according to an equation λ’ = 8 λ /m’. The black squares indicate the area of the assumed detector which is 5 × 5 mm2.

Tables (1)

Tables Icon

Table 1 Wavelengths with Exact Focusing for p = 8 Order for λ = 1.0 mm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

φ=π r 2 λf ,
Δφ= 2π λ h( n1 ).
m A m exp( im 2π d φ ) = m A m exp( i m p φ ) ,
A m = 1 d 0 d T( φ' ) e i 2πm d φ dφ = 1 2πp 0 2πp e iφ λ λ' e iφ m p dφ =i e iπp( λ λ' m p ) sinc[ p( λ λ' m p ) ].
| A m | 2 =sin c 2 [ p( λ λ' m p ) ].
λ λ' = m p ± ξ 2p
| A m | 2 =sin c 2 ( ξ/2 ).
φ m =φ m p =φ( λ λ' ± ξ 2p )
φ m =φ m p =π r 2 λf m p =π r 2 λ'f' f'=f λ λ' p m
f'= 2m±ξ 2m f=f( 1± ξ 2m )

Metrics