Abstract

An investigation on the productivity of silicon nanoparticles by picosecond laser ablation in water is presented. A systematic experimental study is performed as function of the laser wavelength, fluence and ablation time. In case of ablation at 1064 nm silicon nanoparticles with a mean diameter of 40 nm are produced. Instead, ablation at 355 nm results in nanoparticles with a mean diameter of 9 nm for short ablation time while the mean diameter decreases to 3 nm at longer ablation time. An original model based on the in-situ ablation/photo-fragmentation physical process is developed, and it very well explains the experimental productivity findings. The reported phenomenological model has a general validity, and it can be applied to analyze pulsed laser ablation in liquid in order to optimize the process parameters for higher productivity. Finally, an outlook is given towards gram per hour yield of ultra-small silicon nanoparticles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
    [CrossRef] [PubMed]
  2. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
    [CrossRef]
  3. M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
    [CrossRef]
  4. S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
    [CrossRef]
  5. F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
    [CrossRef]
  6. Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004).
    [CrossRef]
  7. S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
    [CrossRef]
  8. Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
    [CrossRef]
  9. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
    [CrossRef]
  10. E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
    [CrossRef]
  11. L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
    [CrossRef] [PubMed]
  12. D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
    [CrossRef] [PubMed]
  13. M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
    [CrossRef]
  14. L. Mangolini, “Synthesis, properties, and applications of silicon nanocrystals,” J. Vac. Sci. Technol. B 31,020801 (2013).
    [CrossRef]
  15. D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
    [CrossRef]
  16. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
    [CrossRef]
  17. V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).
    [CrossRef]
  18. H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
    [CrossRef]
  19. S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013).
    [CrossRef]
  20. S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
    [CrossRef]
  21. Some companies producing and commercializing PLAL generated nanoparticles: PlasmaTech (Italy), http://www.plasmatech.it ; Particular (Germany), http://www.particular.eu ; I-Colloid (US), http://nano.imra.com ; AlphaNov (France), http://www.alphanov.com .
  22. R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
    [CrossRef] [PubMed]
  23. K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
    [CrossRef]
  24. K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
    [CrossRef]
  25. V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009).
    [CrossRef] [PubMed]
  26. D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
    [CrossRef]
  27. P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).
  28. S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
    [CrossRef]
  29. K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
    [CrossRef]
  30. S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).
  31. P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
    [CrossRef]
  32. R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
    [CrossRef]
  33. M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
    [CrossRef]
  34. N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
    [CrossRef] [PubMed]
  35. P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
    [CrossRef]
  36. O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
    [CrossRef]
  37. R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
    [CrossRef] [PubMed]
  38. F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
    [CrossRef]
  39. D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011).
    [CrossRef]
  40. A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
    [CrossRef]
  41. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
    [CrossRef]
  42. V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
    [CrossRef]
  43. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
    [CrossRef]
  44. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
    [CrossRef]
  45. Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
    [CrossRef]
  46. A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
    [CrossRef]
  47. V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
    [CrossRef]
  48. A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
    [CrossRef]
  49. H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
    [CrossRef]
  50. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
    [CrossRef]
  51. O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
    [CrossRef]
  52. P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
    [CrossRef]
  53. F. Brandi, N. Burdet, R. Carzino, A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18, 23488–23494 (2010).
    [CrossRef] [PubMed]
  54. C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
    [CrossRef]
  55. P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
    [CrossRef]
  56. S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
    [CrossRef]
  57. J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
    [CrossRef]
  58. T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
    [CrossRef]
  59. K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
    [CrossRef] [PubMed]

2013 (15)

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

L. Mangolini, “Synthesis, properties, and applications of silicon nanocrystals,” J. Vac. Sci. Technol. B 31,020801 (2013).
[CrossRef]

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).
[CrossRef]

S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013).
[CrossRef]

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

2012 (10)

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

2011 (9)

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011).
[CrossRef]

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

2010 (6)

F. Brandi, N. Burdet, R. Carzino, A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18, 23488–23494 (2010).
[CrossRef] [PubMed]

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

2009 (7)

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009).
[CrossRef] [PubMed]

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
[CrossRef]

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

2008 (1)

H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

2007 (2)

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

2006 (1)

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

2005 (1)

R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004).
[CrossRef]

2002 (1)

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

2001 (2)

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

Abargues, R.

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

Abarques, R.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Abderrafi, K.

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Agouram, Sa”id

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

Al Saud, T.

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

Alevli, M.

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

Alkis, S.

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).

Almuhanna, A.

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

Alsalhi, M.

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

Amendola, V.

V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).
[CrossRef]

Arola, E.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Athanassiou, A.

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

Atwater, H.

R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
[CrossRef] [PubMed]

Bagga, K.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

Bao, F.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Barchanski, A.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

Barcikowski, S.

S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

Bärsch, N.

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

Belomoin, G.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Ben, T.

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Blandin, P.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

Borsella, E.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Bourianoff, G.

R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
[CrossRef] [PubMed]

Brandi, F.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

F. Brandi, N. Burdet, R. Carzino, A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18, 23488–23494 (2010).
[CrossRef] [PubMed]

Bukin, V. V.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Burdet, N.

Burzhuev, S.

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

Cai, W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

Calzada, R. G.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Carles, R.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Carzino, R.

Chai, J. S.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Chaieb, S.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Chen, S.

S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
[CrossRef]

Chewchinda, P.

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

Chichkov, B. N.

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

Chinnathambi, S

S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
[CrossRef]

Chirvony, V.

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Chirvony, V. S.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Cingolani, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

Compagnini, G.

S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013).
[CrossRef]

Cristoforetti, G.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

Dahl, J.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Dante, S.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

Das, G.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

De Cola, L.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Dervaux, J.

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

Di Fabrizio, E.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

Diaspro, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

F. Brandi, N. Burdet, R. Carzino, A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18, 23488–23494 (2010).
[CrossRef] [PubMed]

Ding, H.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Dominguez-Gutierrez, D.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Douplik, A.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Du, X.-W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

Dzhun, I. O.

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Erogbogbo, F.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Eroshova, O. I.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

Ezhov, A. A.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Falconieri, M.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Farcau, C.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Funakubo, H.

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

Ganesan, S.

S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
[CrossRef]

García-Calzada, R.

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

Garnov, S. V.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Gatskevich, E. I.

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Genovese, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

Giammanco, F.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Giorgetti, E.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Giusti, A.

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Golovan, L. A.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Gongalskii, M. B.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

Gongalsky, M. B.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Gonglasky, M. B.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

Gopalakrishanan, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Grandidier, B.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Gu, L.

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

Guieu, V.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Hanagata, N

S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
[CrossRef]

Hashimoto, S.

D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011).
[CrossRef]

He, J.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

He, Y.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Herlin, N.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Howell, S. B.

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

Hu, R.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Ibanez, R.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Ibáñez, R.

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Intartaglia, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

Ivlev, G. D.

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Jakobi, J.

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

Ji, X.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Jiang, J.

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Jiménez, E.

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Kabashin, A. V.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Kashkarov, P. K.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Kawaguchi, K.

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

Khusroa, N.

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

Kim, K. M.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Koga, K.

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

Kohno, J. Y.

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

Kondo, M.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009).
[CrossRef] [PubMed]

Kondow, T.

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

Kosger, A. C.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

Koshizaki, N.

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

Kulinich, S. A.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

Kumar, R.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Kuzmin, P. G.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Laferrière, M.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Laukkanen, P.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Law, W. C.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Lee, S.-T.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Li, H. B.

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Li, X.

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

Li, Z. F.

Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004).
[CrossRef]

Liang, Y.

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Lilge, L.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Liu, P.

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Loschenov, V.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Mafuné, F.

H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

Maletic, S.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Malevich, V. L.

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Mangolini, L.

L. Mangolini, “Synthesis, properties, and applications of silicon nanocrystals,” J. Vac. Sci. Technol. B 31,020801 (2013).
[CrossRef]

Mariotti, D.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009).
[CrossRef] [PubMed]

Marotta, R.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

Marsili, P.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Martinez-Pastor, J. P.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Martínez-Pastor, J. P.

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Maximova, K. A.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

Meneghetti, M.

V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).
[CrossRef]

Meunier, M. M.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Mhin, S. W.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Miserocchi, G.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Mitas, L.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Miyajima, K.

H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

Molina, S. I.

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

Momcilovic, M.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Muto, H.

H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

Nagai, T.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

Nayfeh, M. H.

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Nie, Y.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Niemi, T.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Nolte, S.

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

Odawara, O.

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

Okyay, A. K.

S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

Ortaç, B.

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).

Oruç, F. B.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

Overgaag, K.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Park, G. S.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Peng, F.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Perminov, P. A.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Popovic, D. M.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Popovic, Z.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Povia, M.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Prasad, P. N.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Pyatenko, A.

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
[CrossRef]

Qiu, J.

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

Rao, S.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Rioux, D.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Rivolta, I.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Rosso-Vasic, M.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Roy, I.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Ruckenstein, E.

Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004).
[CrossRef]

Ryabova, A.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Ryu, H. W.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Ryu, J. H.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Sailor, M. J.

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

Sajti, C. L.

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

Salminen, T.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Sanchez-Royo, J. F.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

Sasaki, T.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

Sattari, R.

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

Schwenke, A.

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

Scotto, M.

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

Sentis, M.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

Shafeev, G. A.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Shah, D.

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

Shibata, Y.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

Shim, K. B.

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Shimizu, Y.

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

Simonelli, A.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

Singh, S. C.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

Smith, A.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Snyders, R.

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

Spruijt, E.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Stupca, M.

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

Su, Y.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Suarez, I.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Suzuki, M.

A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
[CrossRef]

Švrc?ek, V.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009).
[CrossRef] [PubMed]

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

Swiatkowska-Warkocka, Z.

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

Swihart, M. T.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Takeda, Y.

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

Tan, D.

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

Therrien, J.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Thiry, D.

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

Tiberi, M.

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

Timoshenko, V. Y.

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

Trtica, M.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Tsuge, T.

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

Tsuji, T.

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

Tuominen, M.

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

Turkevych, I.

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

Twesten, R.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Van Lagen, B.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Van Overschelde, O.

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

Vanmaekelbergh, D.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

Viau, G.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Vural, H. A.

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

Wada, H.

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

Wagener, P.

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

Wagner, L.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Walters, R.

R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
[CrossRef] [PubMed]

Wang, D.

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

Wang, H.

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

Wang, S.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Warot-Fontrose, B.

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

Weiler, S.

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

Werner, D.

D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011).
[CrossRef]

Wu, F.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Xiao, L.

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

Xu, X.

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

Yamada, K.

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

Yamaguchi, M.

A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
[CrossRef]

Yang, G. W.

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Yang, L.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Yang, S.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

Yong, K. T.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Yonge, L.

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

Zabotnov, S. V.

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Zekic, A. A.

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

Zeng, H.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

Zhang, H.

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

Zhao, W. W.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

Zhong, Y.

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

Zhou, S.

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

Zuilhof, H.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

ACS Nano (2)

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011).
[CrossRef]

L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[CrossRef]

Angew. Chem. Int. Ed. (1)

H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002).
[CrossRef]

Appl. Phys. A (1)

J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011).
[CrossRef]

Appl. Phys. A (2)

A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011).
[CrossRef]

M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013).
[CrossRef]

Appl. Phys. A Mater. Sci. Process. (1)

S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006).
[CrossRef]

Crystallogr. Rep. (1)

O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012).
[CrossRef]

J. Nanopart. Res. (1)

S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012).
[CrossRef]

J. Phys. Chem. B (1)

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001).
[CrossRef]

J. Phys. Chem.C (1)

S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).

J. Am. Chem. Soc. (1)

Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013).
[CrossRef]

J. Biomed. Opt. (1)

D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009).
[CrossRef] [PubMed]

J. J. Appl. Phys. (1)

P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).

J. Mater. Chem. (1)

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009).
[CrossRef]

J. Mater. Chem. B (1)

P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012).
[CrossRef] [PubMed]

J. Opt. (1)

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012).
[CrossRef]

J. Photochem. Photobiol. C-Photochem. Rev. (1)

D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013).
[CrossRef]

J. Phys. Chem. B (1)

F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001).
[CrossRef]

J. Phys. Chem. C (12)

H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010).
[CrossRef]

P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[CrossRef]

V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011).
[CrossRef]

F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011).
[CrossRef]

A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009).
[CrossRef]

H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007).
[CrossRef]

S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009).
[CrossRef]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011).
[CrossRef]

P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013).
[CrossRef]

J. Vac. Sci. Technol. B (1)

L. Mangolini, “Synthesis, properties, and applications of silicon nanocrystals,” J. Vac. Sci. Technol. B 31,020801 (2013).
[CrossRef]

Laser & Photon. Rev. (1)

A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013).
[CrossRef]

Laser Phys. (2)

O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013).
[CrossRef]

P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011).
[CrossRef]

Laser Phys. Lett. (2)

D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013).
[CrossRef]

K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013).
[CrossRef]

Nano Lett. (1)

Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004).
[CrossRef]

Nanoscale (1)

R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mat. Express (2)

T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (2)

V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).
[CrossRef]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

RSC Adv. (1)

Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013).
[CrossRef]

Other (3)

E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
[CrossRef]

S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013).
[CrossRef]

Some companies producing and commercializing PLAL generated nanoparticles: PlasmaTech (Italy), http://www.plasmatech.it ; Particular (Germany), http://www.particular.eu ; I-Colloid (US), http://nano.imra.com ; AlphaNov (France), http://www.alphanov.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ablated silicon mass as function of the number of laser pulses (ablation time), and TEM images with size distribution of the produced Si-NPs. Graph (a) and (b) show the ablated silicon mass as function of number of laser pulses for NIR and UV PLAL respectively. The straight lines over the experimental data points result from the least-square linear fits. The insets in graph (a) and (b) show the measured absorption and photoluminescent spectra of the produced Si-NPs respectively. TEM images and size distribution of Si-NPs produced by PLAL in water: (c), NIR PLAL at 2.7 J cm−2 after 72000 laser pulses; (d), UV PLAL at 3 J cm−2 after 6000 laser pulses, i.e., 5 min ablation time; (e), UV PLAL at 3 J cm−2 after 72000 laser pulses.

Fig. 2
Fig. 2

Silicon ablation efficiency of ps PLAL in water; the error bars result from the least-square fit performed on the experimental data points in Fig. 1, and from the uncertainty on the measured laser pulse energy; the curves are the result of a logarithmic fit as from the ablation efficiency model, see Eq. (3).

Fig. 3
Fig. 3

Schematic of in-situ ablation/photo-fragmentation process during PLAL of silicon in water. UV PLAL: a) schematic of ablation and in-situ photo-fragmentation; b) ablation and in-situ photo-fragmentation process loop in the steady state regime leading to constant ablation efficiency. NIR PLAL: c) schematic of ablation without photo-fragmentation; d) ablation without photo-fragmentation process loop leading to constant ablation efficiency.

Tables (1)

Tables Icon

Table 1 Data analysis results for the silicon ablation efficiency of ps PLAL in water. The parameters K and F th app , along with the reported uncertainty, result from the logarithmic fit shown in Fig. 2. The Si-NPs mean size is found from TEM imaging analysis reported in Fig. 1, and the value in parenthesis is the size standard deviation. In the last column, the efficiency parameter described in Section 4 is reported.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = K × ln ( F t / F th ) ,
M a ρ × S × T = ρ × S × K × ln ( F t / F th ) ,
M a = ρ × S × K × ln ( F 0 / F th app ) .
M a = ρ × K × E 0 F th app × F th app F 0 ln ( F 0 F th app ) .
M a , max = ρ × K e × F th app × E 0 = η × E 0 ,

Metrics