Abstract

In this paper, a photonic temporal integrator based on an active Fabry-Perot (F-P) cavity is proposed and theoretically investigated. The gain medium in the F-P cavity is a semiconductor optical amplifier (SOA) with high gain coefficient. Key feature of the proposed photonic integrator is that the length of integration time window is widely tunable and could be ideally extended to infinitely long when the injection current is approaching lasing condition. Based on an F-P cavity with practically feasible parameters, a photonic temporal integrator with an integration time window of 160 ns and an operation bandwidth of 180 GHz is achieved. The time-bandwidth product of this photonic temporal integrator is 28,800, which is about two-orders of magnitude higher than any previously reported results. Gain recovery effect has been also considered and analyzed for the impact on performance of the photonic integrator, followed by the simulation results of the impact of gain recovery.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Azaña, “Ultrafast Analog All-Optical Signal Processors Based on Fiber- Grating Devices,” IEEE Photon. J. 2(3), 359–386 (2010).
    [CrossRef]
  2. N. Q. Ngo, “Optical integrator for optical dark-soliton detection and pulse shaping,” Appl. Opt. 45(26), 6785–6791 (2006).
    [CrossRef] [PubMed]
  3. Y. Park, T. J. Ahn, Y. Dai, J. Yao, J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008).
    [CrossRef] [PubMed]
  4. M. H. Asghari, J. Azaña, “Photonic Integrator-Based Optical Memory Unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
    [CrossRef]
  5. Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
    [CrossRef]
  6. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
    [CrossRef] [PubMed]
  7. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
    [CrossRef] [PubMed]
  8. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. P. Yao, J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Opt. Lett. 37(8), 1355–1357 (2012).
    [CrossRef] [PubMed]
  9. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
    [CrossRef] [PubMed]
  10. N. Huang, N. Zhu, R. Ashrafi, X. Wang, W. Li, L. Wang, J. Azaña, and M. Li, “Active Fabry-Perot Resonator for Photonic Temporal Integrator,” Asia Communications and Photonics Conference 2013, OSA Technical Digest, paper AF1B.7.
    [CrossRef]
  11. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33(1), 4–6 (2008).
    [CrossRef] [PubMed]
  12. M. H. Asghari, Y. Park, J. Azaña, “New design for photonic temporal integration with combined high processing speed and long operation time window,” Opt. Express 19(2), 425–435 (2011).
    [CrossRef] [PubMed]
  13. J. C. Simon, “GaInAsP semiconductor laser amplifier for single-mode fiber communications,” J. Lightwave Technol. 5(9), 1286–1295 (1987).
    [CrossRef]
  14. J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985).
    [CrossRef]
  15. M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
    [CrossRef]
  16. P. Brosson, “Analytical Model of a Semiconductor Optical Amplifier,” J. Lightwave Technol. 12(1), 49–54 (1994).
    [CrossRef]
  17. C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
    [CrossRef]
  18. A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
    [CrossRef]
  19. L. Lepetit, G. Chériaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [CrossRef]
  20. M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
    [CrossRef]
  21. F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
    [CrossRef]
  22. M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
    [CrossRef]
  23. G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
    [CrossRef]
  24. Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
    [CrossRef]
  25. R. Giller, R. J. Manning, G. Talli, R. P. Webb, M. J. Adams, “Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds,” Opt. Express 15(4), 1773–1782 (2007).
    [CrossRef] [PubMed]
  26. C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, R. J. Manning, “Fast gain recovery rates with strong wavelength dependence in a non-linear SOA,” Opt. Express 18(25), 25726–25737 (2010).
    [CrossRef] [PubMed]
  27. H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).
  28. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
    [CrossRef]
  29. W. Mathlouthi, F. Vacondio, P. Lemieux, L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
    [CrossRef] [PubMed]
  30. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
    [CrossRef]
  31. G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
    [CrossRef]
  32. S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010).
    [CrossRef]

2013

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

2012

2011

M. H. Asghari, Y. Park, J. Azaña, “New design for photonic temporal integration with combined high processing speed and long operation time window,” Opt. Express 19(2), 425–435 (2011).
[CrossRef] [PubMed]

M. H. Asghari, J. Azaña, “Photonic Integrator-Based Optical Memory Unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
[CrossRef]

2010

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, R. J. Manning, “Fast gain recovery rates with strong wavelength dependence in a non-linear SOA,” Opt. Express 18(25), 25726–25737 (2010).
[CrossRef] [PubMed]

S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010).
[CrossRef]

J. Azaña, “Ultrafast Analog All-Optical Signal Processors Based on Fiber- Grating Devices,” IEEE Photon. J. 2(3), 359–386 (2010).
[CrossRef]

2008

2007

R. Giller, R. J. Manning, G. Talli, R. P. Webb, M. J. Adams, “Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds,” Opt. Express 15(4), 1773–1782 (2007).
[CrossRef] [PubMed]

N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007).
[CrossRef] [PubMed]

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

2006

2005

H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).

2002

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

2001

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[CrossRef]

1998

F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

1997

M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

1995

1994

P. Brosson, “Analytical Model of a Semiconductor Optical Amplifier,” J. Lightwave Technol. 12(1), 49–54 (1994).
[CrossRef]

1989

Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
[CrossRef]

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

1987

J. C. Simon, “GaInAsP semiconductor laser amplifier for single-mode fiber communications,” J. Lightwave Technol. 5(9), 1286–1295 (1987).
[CrossRef]

1985

J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985).
[CrossRef]

Adams, M. J.

Ahn, T. J.

Aitchison, J. S.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Asghari, M.

M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Asghari, M. H.

Ashrafi, R.

Ayotte, N.

Azaña, J.

Barrios, P.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Ben-Ezra, Y.

Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
[CrossRef]

Brosson, P.

P. Brosson, “Analytical Model of a Semiconductor Optical Amplifier,” J. Lightwave Technol. 12(1), 49–54 (1994).
[CrossRef]

Burrus, C.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Buus, J.

J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985).
[CrossRef]

Chériaux, G.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Cleary, C. S.

Connelly, M. J.

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[CrossRef]

Contestabile, G.

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

Costanzo-Caso, P.

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Dai, Y.

Dentai, A. G.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Doucet, S.

Dreyer, K.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Eckner, J.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Einstein, G.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Gentner, J. L.

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

Giller, R.

Girardin, F.

F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Granieri, S.

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Gröning, A.

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

Guekos, G.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Hansen, P. B.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

Haridim, M.

Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
[CrossRef]

Houbavlis, A.

F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Huang, X.

C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
[CrossRef]

Ito, Y.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Jin, Y.

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Joffre, M.

Joyner, C. H.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Kauer, M.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Kawaguchi, H.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Kitayama, K.-I.

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

Körbl, M.

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

LaRochelle, S.

Lembrikov, B. I.

Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
[CrossRef]

Lemieux, P.

Lepetit, L.

Leuthold, J.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Li, M.

Lin, J.

H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Malacarne, A.

Malloy, K. J.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Manning, R. J.

Maruta, A.

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

Mathlouthi, W.

Meier, J.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Mojahedi, M.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Morito, K.

S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010).
[CrossRef]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Ngo, N. Q.

Occhi, L.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Park, Y.

Penty, R. V.

M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Plastow, R.

J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985).
[CrossRef]

Pleumeekers, J. L.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Poitras, D.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Poole, P. J.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Power, M. J.

Qin, C.

C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
[CrossRef]

Quoc Ngo, N.

Raybon, G.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Rotter, T. J.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Rusch, L. A.

Schares, L.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Schneider, S.

Schweizer, H.

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

Shunk, S.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

Siahmakoun, A.

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Simon, J. C.

J. C. Simon, “GaInAsP semiconductor laser amplifier for single-mode fiber communications,” J. Lightwave Technol. 5(9), 1286–1295 (1987).
[CrossRef]

Slavík, R.

Smith, P. W. E.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Stintz, A.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Talli, G.

Tanaka, S.

S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010).
[CrossRef]

Tucker, R. S.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

Vacondio, F.

Wang, H.

H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).

Webb, R. P.

White, I. H.

M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Wiesenfeld, J. M.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

Wu, J.

H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).

Yang, C.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Yao, J.

Yao, J. P.

Yoshida, Y.

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

Zhang, X.

C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
[CrossRef]

Zilkie, A. J.

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989).
[CrossRef]

S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010).
[CrossRef]

IEEE J. Quantum Electron.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985).
[CrossRef]

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[CrossRef]

C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011).
[CrossRef]

A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007).
[CrossRef]

IEEE Photon. J.

J. Azaña, “Ultrafast Analog All-Optical Signal Processors Based on Fiber- Grating Devices,” IEEE Photon. J. 2(3), 359–386 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. H. Asghari, J. Azaña, “Photonic Integrator-Based Optical Memory Unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011).
[CrossRef]

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002).
[CrossRef]

F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989).
[CrossRef]

J. Appl. Phys.

M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002).
[CrossRef]

J. Lightwave Technol.

P. Brosson, “Analytical Model of a Semiconductor Optical Amplifier,” J. Lightwave Technol. 12(1), 49–54 (1994).
[CrossRef]

H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).

M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

J. C. Simon, “GaInAsP semiconductor laser amplifier for single-mode fiber communications,” J. Lightwave Technol. 5(9), 1286–1295 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Nat Commun

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Other

N. Huang, N. Zhu, R. Ashrafi, X. Wang, W. Li, L. Wang, J. Azaña, and M. Li, “Active Fabry-Perot Resonator for Photonic Temporal Integrator,” Asia Communications and Photonics Conference 2013, OSA Technical Digest, paper AF1B.7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Concept diagram of an optical integrator. (b) Schematic figure of the proposed photonic temporal integrator based on an active F-P cavity.

Fig. 2
Fig. 2

Frequency response of an F-P cavity in transmission. (a) amplitude response and (b) phase response.

Fig. 3
Fig. 3

Integration of different input optical waveforms when the Q factor of the F-P cavity is 1 × 109. Inset shows the input optical signals. (a) Gaussian optical pulse; (b) Gaussian pulse pair with the same phase level; (c) Gaussian pulse pair with a pi phase shift; (d) Square waveform.

Fig. 4
Fig. 4

(a) Q factor of the active F-P cavity versus injection current. Inset is a zoom-in-view of the plot; (b) Integration results of the active F-P cavity with different Q factors. Inset shows the input optical pulse.

Fig. 5
Fig. 5

(a) FSR variations versus carrier density; (b) Relation between the net modal gain with operation bandwidth when the length of integration time window is fixed at 68 ns.

Fig. 6
Fig. 6

(a) Gain dynamics after the input signal pulse versus time; gain recovery process starts once the signal pulse exits the SOA from a minimum gain value to its steady value; (b) schematic of gain profile after launching an optical pulse into the SOA. The gain profile also presents the gain recovery level.

Fig. 7
Fig. 7

Gain recovery time and corresponding integration results. (a) gain dynamics versus time with different carrier lifetime. The black line represents a gain recovery time of 55ps and the pink line represents a gain recovery time of 116ps. The blue line shows a constant gain neglecting the gain recovery process. (b) comparisons of integration results that correspond to different gain values. The black and pink line corresponds to a gain recovery process shown in Fig. 7(a) and the temporal integration windows are 1.5ns and 4.5ns, respectively. The blue line is the simulated integration results in the above sections and the red line is the ideal output results. Inset shows a zoom-in view of the temporal integration windows.

Tables (2)

Tables Icon

Table 1 Practically feasible parameters of the F-P cavity used in the numerical analysis.

Tables Icon

Table 2 Parameters used for calcutation of gain recovery time.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f( t )u( t )= t f( τ ) dτ,
U( ω )=F( u( t ) )1/j( ω ω 0 ),
E out ( ω )= E o1 ( ω )+ E o2 ( ω )+ E o3 ( ω )+= i=1 + E oi ( ω ) .
H( ω )= ( 1 R 1 )( 1 R 2 ) G S e jωτ 1 R 1 R 2 G S e j2ωτ ,
H( ω ) ( 1 R 1 )( 1 R 2 ) G S e j(ω ω 0 )τ e j(ω ω 0 )τ = ( 1 R 1 )( 1 R 2 ) G S j2sin[ (ω ω 0 )τ ] , ( 1 R 1 )( 1 R 2 ) G S j2(ω ω 0 )τ 1 j(ω ω 0 )
d N d t = I q V ( A N + B N 2 + C N 3 ) Γ g 0 P a v L V h ν ,
H ( ω ) = ( 1 R 1 ) ( 1 R 2 ) G S e j ω τ 1 R 1 R 2 G n u e j 2 ω τ ,

Metrics