Abstract

Resistance thermometry provides a time-tested method for taking temperature measurements. However, fundamental limits to resistance-based approaches has produced considerable interest in developing photonic temperature sensors to leverage advances in frequency metrology and to achieve greater mechanical and environmental stability. Here we show that silicon-based optical ring resonator devices can resolve temperature differences of 1 mK using the traditional wavelength scanning methodology. An even lower noise floor of 80 μK for measuring temperature difference is achieved in the side-of-fringe, constant power mode measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).
  2. M. R. Pinsky, L. Brochard, J. Mancebo, and G. Hedenstierna, eds., Applied Physiology in Intensive Care Medicine (Springer, 2009).
  3. K. R. A. Wunderlich, On the Temperature in Diseases: A Manual of Medical Thermometry (The New Sydenham Society, 1868), Vol. XLIX.
  4. F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60(1), 417–430 (2009).
    [CrossRef] [PubMed]
  5. H. W. S. III, HVAC Water Chillers and Cooling Towers (CRC Press Taylor & Francis Group, 2012).
  6. J. Turner, ed., Automotive Sensor, Sensors Technology (Momentum Press LLC, 2009).
  7. R. Price, “The Platinum resistance Thermometer,” Platin. Met. Rev. 3, 78–87 (1959).
  8. G. F. Strouse, “Standard Platinum Resistance Thermometer Calibrations fromthe Ar TP to the Ag FP,” NIST Special Publication 250–250–81 (2008).
  9. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
    [CrossRef] [PubMed]
  10. A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992).
    [CrossRef]
  11. R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).
  12. J. Hecht, Understanding Fiber Optics 4th ed. (Prentice Hall, 2002).
  13. D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications 3ed. (ISA, 2000).
  14. F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986).
    [CrossRef]
  15. G. F. Strouse, “Sapphire whispering gallery thermometer,” Int. J. Thermophys. 28(6), 1812–1821 (2007).
    [CrossRef]
  16. W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44(5), 907–916 (1965).
    [CrossRef]
  17. L. Stern, I. Goykhman, B. Desiatov, U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37(8), 1313–1315 (2012).
    [CrossRef] [PubMed]
  18. X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, G.-Q. Lo, “Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
    [CrossRef] [PubMed]
  19. M.-S. Kwon, W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [CrossRef] [PubMed]
  20. B. Guha, B. B. C. Kyotoku, M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
    [CrossRef] [PubMed]
  21. B. Guha, K. Preston, M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
    [CrossRef] [PubMed]
  22. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  23. Disclaimer: Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.
  24. K. Tiefenthaler, W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9(4), 137–139 (1984).
    [CrossRef] [PubMed]
  25. K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985).
    [CrossRef]
  26. L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
    [CrossRef]
  27. M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21(4), 697–705 (2004).
    [CrossRef]

2012

2010

2009

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60(1), 417–430 (2009).
[CrossRef] [PubMed]

2008

2007

G. F. Strouse, “Sapphire whispering gallery thermometer,” Int. J. Thermophys. 28(6), 1812–1821 (2007).
[CrossRef]

2004

2002

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

1997

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

1992

A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992).
[CrossRef]

1986

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986).
[CrossRef]

1985

K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985).
[CrossRef]

1984

1965

W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44(5), 907–916 (1965).
[CrossRef]

1959

R. Price, “The Platinum resistance Thermometer,” Platin. Met. Rev. 3, 78–87 (1959).

Allan, D. W.

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986).
[CrossRef]

Bae, H. K.

Bennion, I.

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992).
[CrossRef]

Braatz, R. D.

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

Desiatov, B.

Gorodetsky, M. L.

Goykhman, I.

Grudinin, I. S.

Guha, B.

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

Jackson, D. A.

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Jolesz, F. A.

F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60(1), 417–430 (2009).
[CrossRef] [PubMed]

Kee, J. S.

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992).
[CrossRef]

Kim, G.-D.

Kwon, M.-S.

Kyotoku, B. B. C.

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Levy, U.

Lim, B. T.

Lin, Z.

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Liow, T.-Y.

Lipson, M.

Lo, G.-Q.

Lukosz, W.

K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985).
[CrossRef]

K. Tiefenthaler, W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9(4), 137–139 (1984).
[CrossRef] [PubMed]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[CrossRef] [PubMed]

Nagy, Z. K.

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

Park, C.-H.

Park, M. K.

Preston, K.

Price, R.

R. Price, “The Platinum resistance Thermometer,” Platin. Met. Rev. 3, 78–87 (1959).

Rigrod, W. W.

W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44(5), 907–916 (1965).
[CrossRef]

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

Song, J.

Steier, W. H.

Stern, L.

Strouse, G. F.

G. F. Strouse, “Sapphire whispering gallery thermometer,” Int. J. Thermophys. 28(6), 1812–1821 (2007).
[CrossRef]

Tan, R. B. H.

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

Tiefenthaler, K.

K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985).
[CrossRef]

K. Tiefenthaler, W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9(4), 137–139 (1984).
[CrossRef] [PubMed]

Tu, X.

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

Walls, F. L.

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986).
[CrossRef]

Webb, D. J.

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

Woo, Y. X.

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

Yiying, J. Q.

Yu, M.

Yun-Jiang, R.

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Annu. Rev. Med.

F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60(1), 417–430 (2009).
[CrossRef] [PubMed]

Bell Syst. Tech. J.

W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44(5), 907–916 (1965).
[CrossRef]

Cryst. Growth Des.

Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).

Int. J. Thermophys.

G. F. Strouse, “Sapphire whispering gallery thermometer,” Int. J. Thermophys. 28(6), 1812–1821 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Journalism

R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).

Opt. Commun.

L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Technology Letters, IEEE

A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992).
[CrossRef]

Platin. Met. Rev.

R. Price, “The Platinum resistance Thermometer,” Platin. Met. Rev. 3, 78–87 (1959).

Proc. IEEE

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986).
[CrossRef]

Sensors (Basel)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[CrossRef] [PubMed]

Thin Solid Films

K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985).
[CrossRef]

Other

G. F. Strouse, “Standard Platinum Resistance Thermometer Calibrations fromthe Ar TP to the Ag FP,” NIST Special Publication 250–250–81 (2008).

M. R. Pinsky, L. Brochard, J. Mancebo, and G. Hedenstierna, eds., Applied Physiology in Intensive Care Medicine (Springer, 2009).

K. R. A. Wunderlich, On the Temperature in Diseases: A Manual of Medical Thermometry (The New Sydenham Society, 1868), Vol. XLIX.

H. W. S. III, HVAC Water Chillers and Cooling Towers (CRC Press Taylor & Francis Group, 2012).

J. Turner, ed., Automotive Sensor, Sensors Technology (Momentum Press LLC, 2009).

J. Hecht, Understanding Fiber Optics 4th ed. (Prentice Hall, 2002).

D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications 3ed. (ISA, 2000).

Disclaimer: Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A) SEM image of ring resonator device (11 μm radius, 130 nm gap) is shown B) A block diagram of the microscopy-based interrogation setup used to interrogate the photonic devices is shown. C) The 11 μm radius ring resonator used here shows a FSR of ≈9.2 nm near 1550 nm. D) The ring resonator acts as a notch filter whose resonance window is sensitive to temperature changes. The ring’s resonance wavelength systematically increases as the temperature increases; resonances at various temperatures are shown in the insert

Fig. 2
Fig. 2

a) Increasing incident laser power causes self-heating in ring resonator based devices resulting in an increase of the device resonance wavelength. Consequently, ring resonator increasingly over-estimates the ambient temperature compared to a platinum resistance thermometer. Over the incident power range of 0.0063 mW to 0.1 mW the estimated systematic temperature error is below 0.1 K. B) Power spectral density plot shows 1/f noise dependence. C) Allan Variance measurements indicate the instrument noise bottoms out at a 1 Hz measurement rate, creating a noise floor of ≈80 μK.

Tables (1)

Tables Icon

Table 1 Noise sources contributing to photonic temperature measurement

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = [ n eff ( λ m , T ) x L ( T ) ] / m
Δ λ m = ( ( n e f f T ) + n e f f ( L T ) ( 1 L ) n g ) ( Δ T × λ m )
n g = ( n e f f λ m ( n e f f λ m ) )

Metrics