Abstract

We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, The Supercontinuum Laser Source, 2d ed., New York (Springer, 2006).
  2. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  3. E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett. 20(10), 1166–1168 (1995).
    [CrossRef] [PubMed]
  4. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  5. H. Kano, H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005).
    [CrossRef] [PubMed]
  6. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  7. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010).
    [CrossRef] [PubMed]
  8. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Ultra broadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [CrossRef] [PubMed]
  9. L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007).
    [CrossRef] [PubMed]
  10. I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
    [CrossRef] [PubMed]
  11. A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
    [CrossRef]
  12. P. Baldeck, R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
    [CrossRef]
  13. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  14. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  15. K. Narayanan, S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]
  16. J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21(4), 3932–3940 (2013).
    [CrossRef] [PubMed]
  17. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
    [CrossRef] [PubMed]
  18. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
    [CrossRef] [PubMed]
  19. K. Y. Wang, A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
    [CrossRef] [PubMed]
  20. U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source,” Opt. Express 21, 32032 (2013).
  21. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [CrossRef] [PubMed]
  22. A. Hasegawa, W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16(7), 694–697 (1980).
    [CrossRef]
  23. T. Deschaines, J. Hodkiewicz, P. Henson, “Characterization of amorphous and microcrystalline silicon using raman spectroscopy” Thermo Fisher Scientific, Madison, WI, USA.
  24. N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [CrossRef] [PubMed]
  25. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
    [CrossRef] [PubMed]
  26. X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett 18(24), 2617–2619 (2006).
    [CrossRef]
  27. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12(13), 2838–2843 (2004).
    [CrossRef] [PubMed]
  28. J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
    [CrossRef] [PubMed]
  29. D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  30. M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
    [CrossRef]
  31. G. P. Agrawal, Nonlinear fiber optics, Optics and Photonics, 3rd ed. (San Diego Elsevier, 2001).

2013 (2)

2012 (3)

2011 (3)

2010 (3)

2009 (1)

2008 (1)

2007 (2)

2006 (4)

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
[CrossRef] [PubMed]

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett 18(24), 2617–2619 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1995 (2)

E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett. 20(10), 1166–1168 (1995).
[CrossRef] [PubMed]

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

1987 (1)

P. Baldeck, R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
[CrossRef]

1984 (1)

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

1980 (1)

A. Hasegawa, W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16(7), 694–697 (1980).
[CrossRef]

1977 (1)

D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Agrawal, G. P.

Akhmediev, N.

Alfano, R.

P. Baldeck, R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
[CrossRef]

Baets, R.

Baldeck, P.

P. Baldeck, R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
[CrossRef]

Ballesteros, G. C.

Bandelow, U.

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

Ben Bakir, B.

Bogaerts, W.

Brinkman, W. F.

A. Hasegawa, W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16(7), 694–697 (1980).
[CrossRef]

Carletti, L.

Chen, X.

Choi, D. Y.

Chou, C. Y.

Chu, S.

Clemmen, S.

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dadap, J. I.

Dave, U. D.

De Souza, E. A.

Demircan, A.

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

Dias, F.

Duchesne, D.

Dudley, J. M.

Eggleton, B. J.

Emplit, P.

Fedeli, J. M.

Fédéli, J. M.

Ferrera, M.

Finot, C.

Foster, A. C.

Foster, M. A.

Gaeta, A. L.

Galili, M.

Gautier, P.

Genty, G.

Green, W. M.

Green, W. M. J.

Grillet, C.

Grosse, P.

Halir, R.

Hamaguchi, H. O.

Hänsch, T. W.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hasama, T.

Hasegawa, A.

A. Hasegawa, W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16(7), 694–697 (1980).
[CrossRef]

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hsieh, I. W.

Hu, H.

Ishikawa, H.

Jackson, W. B.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Jeppesen, P.

Ji, H.

Kamei, T.

Kano, H.

Karlsson, M.

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Kawashima, H.

Kibler, B.

Kintaka, K.

Knox, W. H.

Kuyken, B.

Lamont, M. R. E.

Lantz, E.

Légaré, F.

Leo, F.

Levy, J. S.

Lin, Q.

Lipson, M.

Little, B. E.

Liu, X.

Luther-Davies, B.

Madden, S.

Maillotte, H.

Martí, J.

Massar, S.

Matres, J.

McNab, S. J.

Menezo, S.

Miller, D. A. B.

Monat, C.

Morandotti, R.

Mori, M.

Morthier, G.

Moss, D. J.

Mussot, A.

Narayanan, K.

Nuss, M. C.

Ogasawara, T.

Okano, M.

Okawachi, Y.

Osgood, R. M.

Oton, C. J.

Oxenløwe, L. K.

Panoiu, N. C.

Peccianti, M.

Pitois, S.

Preble, S. F.

Pu, M.

Razzari, L.

Roelkens, G.

Sakakibara, Y.

Selvaraja, S.

Selvaraja, S. K.

Shoji, Y.

Staebler, D. L.

D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Stutzmann, M.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Suda, S.

Sylvestre, T.

Tsai, C. C.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Uvin, S.

Van Thourhout, D.

Vlasov, Y. A.

Wang, K. Y.

Wronski, C. R.

D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Xia, F.

Yin, L.

Appl. Phys. B (1)

A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86(1), 31–39 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hasegawa, W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16(7), 694–697 (1980).
[CrossRef]

IEEE Photon. Technol. Lett (1)

X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett 18(24), 2617–2619 (2006).
[CrossRef]

J. Lightwave Technol. (1)

P. Baldeck, R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (14)

H. Kano, H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

K. Narayanan, S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21(4), 3932–3940 (2013).
[CrossRef] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12(13), 2838–2843 (2004).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
[CrossRef] [PubMed]

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source,” Opt. Express 21, 32032 (2013).

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (3)

R. R. Alfano, The Supercontinuum Laser Source, 2d ed., New York (Springer, 2006).

T. Deschaines, J. Hodkiewicz, P. Henson, “Characterization of amorphous and microcrystalline silicon using raman spectroscopy” Thermo Fisher Scientific, Madison, WI, USA.

G. P. Agrawal, Nonlinear fiber optics, Optics and Photonics, 3rd ed. (San Diego Elsevier, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SC generation in a 1cm long 500 × 220 nm2 a-Si-H waveguide: output spectrum as function of on chip peak pump power. The spectra are vertically offset by multiples of 40 dB for clarity.

Fig. 2
Fig. 2

(a) Evolution of the SC bandwidth as a function of time at −30 dBm from the pump peak. (b) Comparison between SC bandwidth at the beginning of the experiment (blue curve, t = 0 minutes), and after degradation (red curve, t = 15 hours). The dashed line represent the level at which the SC bandwidth evolution was calculated for panel (a).

Fig. 3
Fig. 3

SCs generation in 1 cm long a-Si-H waveguides with a cross-section of 700 × 220 nm2 (a), 750 × 220 nm2 (b), and 800 × 220 nm2 (c) observed on a mid-IR OSA. In panel (a) the pump wavelength is 1560nm (FWHM ≈1 ps), while it is 1530 nm (FWHM ≈1.6 ps) in panel (b) and (c). The on chip peak power is estimated to be 12 W, 9 W and 4 W respectively.

Fig. 4
Fig. 4

Output spectra of MI process in 1cm long waveguides of cross section of 500 × 220 nm2 (a) and 700 × 220 nm2 (b) respectively. A 3.8 ps pulsed laser (power on chip = 8 W) was used for the waveguide of 500 nm of width, and a 1.6 ps pulsed laser (power on chip = 3.3 W) for the waveguide of 700 nm of width.

Fig. 5
Fig. 5

Stability of the SC generated in a waveguide of 750 nm of width (blue curve (t = 0 minutes), red curve (t = 60 minutes)): after 1 hour the spectrum has not changed (compare with Fig. 3(b)).

Tables (2)

Tables Icon

Table 1 Linear and nonlinear losses as a function of waveguides width

Tables Icon

Table 2 Nonlinear coefficient and FOM as a function of waveguides width

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 T =exp(αL) L eff 2 γ im P+exp(αL)

Metrics