Abstract

In this paper, a full-Stokes imaging polarimeter operating at 580 nm using an array of elliptical polarizers is presented. The division-of-focal-plane polarimeter utilizes a set of four optimized measurements which represent a regular tetrahedron inscribed in the Poincaré sphere. Results from the device fabrication, instrument calibration and characterization are presented. The performance of the optimized full Stokes polarimeter, as defined by size of the standard deviation of the degree of circular polarization, is found to be approximately five times better than the performance of the simple full-Stokes polarimeter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
    [CrossRef] [PubMed]
  2. J. Soni, S. Chandel, J. Jagtap, A. Pradhan, and N. Ghosh, “Mueller matrix polarimetry in fluorescence scattering from biological tissues,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FW5A.3.
  3. J. S. Tyo, M. P. Rowe, E. N. Pugh, N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35(11), 1855–1870 (1996).
    [CrossRef] [PubMed]
  4. W. L. Hsu, S. Johnson, S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
    [CrossRef]
  5. S. Tominaga, A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
    [CrossRef]
  6. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
    [CrossRef] [PubMed]
  7. Y. Zhang, H. Zhao, N. Li, “Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,” Appl. Opt. 52(6), 1284–1292 (2013).
    [CrossRef] [PubMed]
  8. J. D. Perreault, “Triple Wollaston-prism complete-Stokes imaging polarimeter,” Opt. Lett. 38(19), 3874–3877 (2013).
    [CrossRef] [PubMed]
  9. F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
    [CrossRef]
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  11. V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  12. M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [CrossRef] [PubMed]
  13. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [CrossRef] [PubMed]
  14. G. Myhre, A. Sayyad, S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18(26), 27777–27786 (2010).
    [CrossRef] [PubMed]
  15. W. L. Hsu, J. Ma, G. Myhre, K. Balakrishnan, S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30(2), 252–258 (2013).
    [CrossRef] [PubMed]
  16. G. Myhre, S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48(32), 6152–6158 (2009).
    [CrossRef] [PubMed]
  17. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-Stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [CrossRef] [PubMed]
  18. X. Zhao, A. Bermak, F. Boussaid, V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [CrossRef] [PubMed]
  19. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [CrossRef] [PubMed]
  20. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [CrossRef] [PubMed]
  21. J. C. del Toro Iniesta, M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39(10), 1637–1642 (2000).
    [CrossRef] [PubMed]
  22. R. Perkins, V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
    [CrossRef] [PubMed]
  23. J. Pezzaniti, R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
    [CrossRef]
  24. S. Y. Lu, R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [CrossRef]
  25. R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).
  26. C. F. LaCasse, R. A. Chipman, J. S. Tyo, “Band limited data reconstruction in modulated polarimeters,” Opt. Express 19(16), 14976–14989 (2011).
    [CrossRef] [PubMed]
  27. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
    [CrossRef] [PubMed]
  28. H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
    [CrossRef]
  29. S. K. Gao, V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
    [CrossRef] [PubMed]
  30. S. K. Gao, V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
    [CrossRef] [PubMed]
  31. D. A. LeMaster, S. C. Cain, “Multichannel blind deconvolution of polarimetric imagery,” J. Opt. Soc. Am. A 25(9), 2170–2176 (2008).
    [CrossRef] [PubMed]

2013

2012

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-Stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[CrossRef] [PubMed]

M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[CrossRef] [PubMed]

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

2011

2010

2009

2008

2007

2006

2005

2002

2000

1996

1995

J. Pezzaniti, R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Afshinmanesh, F.

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

Balakrishnan, K.

Bermak, A.

Boussaid, F.

Brock, N.

Brongersma, M. L.

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

Cai, W.

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

Cain, S. C.

Chenault, D. B.

Chigrinov, V. G.

Chipman, R.

S. Y. Lu, R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
[CrossRef]

J. Pezzaniti, R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Chipman, R. A.

Collados, M.

del Toro Iniesta, J. C.

Dereniak, E. L.

Descour, M. R.

Elsner, A. E.

Engheta, N.

Gao, S. K.

Goldstein, D. H.

Goldstein, D. L.

Gruev, V.

Hayes, J.

Hsu, W. L.

Järrendahl, K.

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

Johnson, S.

W. L. Hsu, S. Johnson, S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
[CrossRef]

Kemme, S. A.

Kimachi, A.

S. Tominaga, A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[CrossRef]

Kulkarni, M.

LaCasse, C.

LaCasse, C. F.

Landin, J.

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

Lazarus, N.

LeMaster, D. A.

Li, N.

Lu, S. Y.

Ma, J.

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

Millerd, J.

Myhre, G.

North-Morris, M.

Novak, M.

Ortu, A.

Pau, S.

Peinado, A.

Perkins, R.

Perreault, J. D.

Pezzaniti, J.

J. Pezzaniti, R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Phipps, G. S.

Pugh, E. N.

Rowe, M. P.

Sabatke, D. S.

Sayyad, A.

Shaw, J. A.

Sweatt, W. C.

Tominaga, S.

S. Tominaga, A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[CrossRef]

Twietmeyer, K. M.

Tyo, J. S.

Van der Spiegel, J.

VanNasdale, D.

White, J. S.

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

Wyant, J.

York, T.

Zhang, Y.

Zhao, H.

Zhao, X.

Zhao, Y.

Appl. Opt.

J. Mod. Opt.

W. L. Hsu, S. Johnson, S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
[CrossRef]

J. Opt. Soc. Am. A

Nanophotonics

F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[CrossRef]

Opt. Eng.

S. Tominaga, A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[CrossRef]

J. Pezzaniti, R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Opt. Express

X. Zhao, A. Bermak, F. Boussaid, V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[CrossRef] [PubMed]

V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[CrossRef] [PubMed]

R. Perkins, V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
[CrossRef] [PubMed]

G. Myhre, A. Sayyad, S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18(26), 27777–27786 (2010).
[CrossRef] [PubMed]

C. F. LaCasse, R. A. Chipman, J. S. Tyo, “Band limited data reconstruction in modulated polarimeters,” Opt. Express 19(16), 14976–14989 (2011).
[CrossRef] [PubMed]

S. K. Gao, V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
[CrossRef] [PubMed]

M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[CrossRef] [PubMed]

G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-Stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[CrossRef] [PubMed]

S. K. Gao, V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
[CrossRef] [PubMed]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[CrossRef] [PubMed]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Philos. Mag.

H. Arwin, R. Magnusson, J. Landin, K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[CrossRef]

Other

R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).

J. Soni, S. Chandel, J. Jagtap, A. Pradhan, and N. Ghosh, “Mueller matrix polarimetry in fluorescence scattering from biological tissues,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FW5A.3.

Supplementary Material (1)

» Media 1: AVI (29550 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two full-Stokes polarimeter designs are illustrated on the Poincaré sphere. The dots represent the measurement states of each polarimeter and form tetrahedrons of different sizes. (a) The simple full-Stokes DoFP polarimeter utilizes three linear and one circular micropolarizer. (b) The optimized full-Stokes DoFP polarimeter utilizes four elliptical micropolarizers.

Fig. 2
Fig. 2

(a) The FPA of the polarimeter is comprised of a substrate, a microretarder, an isolation layer, and a uniform polarizer on top of a sensor. (b) A uniform vertical polarizer and a pixelated retarder with a retardance of 132° and fast axis angles of ± 15.1° (A, B) and ± 51.7° (C, D) are shown. Dotted lines denote that the micropolarizers are repeated across the sensor array. (c) Each resultant elliptical micropolarizer transmits a different elliptical polarization state and the transmitted intensity is measured by individual pixelated sensor.

Fig. 3
Fig. 3

Fabrication processes of the LCP elliptical micropolarizer. Note that the dimensions are not drawn to scale.

Fig. 4
Fig. 4

Horizontal cut lines are shown for linear diattenuation, linear diattenuation orientation, and circular diattenuation taken at 580 nm. Red dashed lines represent measurements of pixel A and C, while blue solid lines represent measurements of pixel B and D.

Fig. 5
Fig. 5

(a) A micrograph of an elliptical micropolarizer shows the four polarization filters in a macro pixel. (b) The sensor without micropolarizer and (c) the sensor with the aligned and affixed micropolarizer are shown. (d) The Imperx ICL-B1620 camera is attached to a Computar C-mount zoom lens.

Fig. 6
Fig. 6

A 580nm collimated light source with a linear polarizer and a nearly quarter wave retarder is utilized for the polarimeter calibration.

Fig. 7
Fig. 7

The DOLP and DOCP are measured as a function of the fast axis orientation of an 89.1° retarder at 580 nm. (a) The circles mark the measurements, and the solid lines are the theoretical prediction. The error bars represent one standard deviation in the DOCP or DOLP of all the pixels. (b) The optimized elliptical micropolarizer has fewer fabrication defects which results in less error than the simple full-Stokes design. (c) Simple full-Stokes polarimeter uses an imbalance design in the measurement space, causing large variance in the standard deviation. The standard deviations of DOLP and DOCP of the optimized full-Stokes polarimeter are less than 0.05. Data of simple full-Stokes polarimeter are taken from Ref [17].

Fig. 8
Fig. 8

The Stokes image of a beetle and a calcite crystal above printed letters is taken at f/5.6.

Fig. 9
Fig. 9

A video frame of a beam chopper with polarizers placed in each window is taken at f/5.6. The polarizers in the inside windows are circular polarizers, and the polarizers in the outside windows are linear polarizers oriented radially (Media 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( m,n )=A ( m,n ) T S( m,n )=[ A 0 ( m,n ) A 1 ( m,n ) A 2 ( m,n ) A 3 ( m,n ) ][ S 0 ( m,n ) S 1 ( m,n ) S 2 ( m,n ) S 3 ( m,n ) ],
I( m,n )=[ A ( m,n ) T A ( m+1,n ) T A ( m,n+1 ) T A ( m+1,n+1 ) T ]S( m,n )=W( m,n ) S( m,n ),
S . ( m,n )=W ( m,n ) p 1 I( m,n ),

Metrics