Abstract

We propose a method to overcome Auger recombination in nanocrystal quantum dot lasers using cavity-enhanced spontaneous emission. We derive a numerical model for a laser composed of nanocrystal quantum dots coupled to optical nanocavities with small mode-volume. Using this model, we demonstrate that spontaneous emission enhancement of the biexciton transition lowers the lasing threshold by reducing the effect of Auger recombination. We analyze a photonic crystal nanobeam cavity laser as a realistic device structure that implements the proposed approach.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Hill, “Nanophotonics: lasers go beyond diffraction limit,” Nat. Nanotechnol. 4, 706–707 (2009).
    [CrossRef] [PubMed]
  2. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19, 17683–17690 (2011).
    [CrossRef] [PubMed]
  3. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
    [CrossRef]
  4. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
    [CrossRef]
  5. L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).
    [CrossRef] [PubMed]
  6. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933 (1996).
    [CrossRef]
  7. V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, 2003).
    [CrossRef]
  8. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
    [CrossRef]
  9. P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
    [CrossRef]
  10. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
    [CrossRef]
  11. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
    [CrossRef] [PubMed]
  12. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
    [CrossRef] [PubMed]
  13. H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
    [CrossRef]
  14. H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
    [CrossRef]
  15. M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
    [CrossRef]
  16. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
    [CrossRef]
  17. J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
    [CrossRef]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  19. V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science 28, 214–220 (2003).
  20. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
    [CrossRef]
  21. M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
    [CrossRef]
  22. J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. of Appl. Phys. 90, 283–327 (2003).
  23. Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011).
    [CrossRef] [PubMed]
  24. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
    [CrossRef]
  25. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
    [CrossRef]
  26. J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
    [CrossRef]
  27. S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
    [CrossRef] [PubMed]
  28. S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
    [CrossRef]
  29. D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996).
    [CrossRef]
  30. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2007).
  31. O. Benson, Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
    [CrossRef]
  32. G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
    [CrossRef]
  33. P. W. Milonni, J. H. Eberly, Laser Physics (Wiley, 2010).
    [CrossRef]
  34. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
    [CrossRef] [PubMed]
  35. R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
    [CrossRef]
  36. I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
    [CrossRef]
  37. M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
    [CrossRef] [PubMed]
  38. M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
    [CrossRef]
  39. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
    [CrossRef]
  40. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  41. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  42. Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [CrossRef] [PubMed]
  43. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [CrossRef] [PubMed]
  44. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
    [CrossRef] [PubMed]
  45. S. Gupta, E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21, 29612–29619 (2013).
    [CrossRef]
  46. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090–16096 (2007).
    [CrossRef] [PubMed]
  47. A. R. Zain, N. P. Johnson, M. Sorel, R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
    [CrossRef] [PubMed]
  48. Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [CrossRef]
  49. A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
    [CrossRef]
  50. K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
    [CrossRef]
  51. J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
    [CrossRef] [PubMed]
  52. Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  53. M. Barth, J. Kouba, J. Stingl, B. Löchel, O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231–17240 (2007).
    [CrossRef] [PubMed]
  54. J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
    [CrossRef]
  55. M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
    [CrossRef]
  56. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
    [CrossRef]

2013 (1)

2011 (8)

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[CrossRef] [PubMed]

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef] [PubMed]

A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
[CrossRef]

K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
[CrossRef]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19, 17683–17690 (2011).
[CrossRef] [PubMed]

Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

2010 (4)

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

2009 (4)

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

M. T. Hill, “Nanophotonics: lasers go beyond diffraction limit,” Nat. Nanotechnol. 4, 706–707 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (4)

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090–16096 (2007).
[CrossRef] [PubMed]

M. Barth, J. Kouba, J. Stingl, B. Löchel, O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231–17240 (2007).
[CrossRef] [PubMed]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

2006 (2)

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

2005 (3)

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

2004 (2)

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

2003 (7)

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science 28, 214–220 (2003).

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. of Appl. Phys. 90, 283–327 (2003).

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

2002 (3)

L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).
[CrossRef] [PubMed]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

2001 (1)

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

2000 (3)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

1999 (2)

S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

O. Benson, Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

1998 (1)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

1996 (4)

D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996).
[CrossRef]

S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933 (1996).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

1991 (1)

G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Achermann, M.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Alivisatos, A. P.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933 (1996).
[CrossRef]

Alivisatos, P.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Anikeeva, P. O.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Atwater, H.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Baba, T.

Babinec, T.

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Balet, L. P.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Banin, U.

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Barrett, K. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Barth, M.

Bawendi, M.

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996).
[CrossRef]

Bawendi, M. G.

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Bechtel, H. A.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Benson, O.

Bezel, I.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

Bezel, I. V.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Bhattacharya, P.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Bjork, G.

G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
[CrossRef]

Bol, A. A.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Bose, R.

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

Botto, T.

Boudreau, R.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Brus, L. E.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Buckley, S.

K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
[CrossRef]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011).
[CrossRef] [PubMed]

Camacho, R.

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Caruge, J.-M.

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

Chan, Y.

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

Charvolin, T.

Chatterjee, R.

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Copeland, R. G.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

De La Rue, R. M.

de Mello Donegá, C.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Deotare, P.

Deotare, P. B.

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Dickerson, R.

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

Ebenstein, Y.

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Eberly, J. H.

P. W. Milonni, J. H. Eberly, Laser Physics (Wiley, 2010).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

Eisler, H.

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

Eisler, H.-J.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Ellingson, R. J.

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Empedocles, S.

S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

Empedocles, S. A.

S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

Endo, T.

Englund, D.

I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fisher, B. R.

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Frederix, P. L. T. M.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Fromm, D.

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Gallagher, A.

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Gao, J.

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

Gerard, J.

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. of Appl. Phys. 90, 283–327 (2003).

Gerion, D.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Gerritsen, H. C.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Gong, Y.

Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

Gourley, C. R.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Gourley, P. L.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Gupta, S.

Hachuda, S.

Hadji, E.

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Hendricks, J. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Hill, M. T.

M. T. Hill, “Nanophotonics: lasers go beyond diffraction limit,” Nat. Nanotechnol. 4, 706–707 (2009).
[CrossRef] [PubMed]

Hollingsworth, J.

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Hollingworth, J. A.

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

Htoon, H.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

Imai, Y.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Ivanov, S. A.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Johnson, N. P.

Johnson, S.

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Jones, M.

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Kazes, M.

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Kim, S.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Kita, S.

Klimov, V.

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

Klimov, V. I.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science 28, 214–220 (2003).

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, 2003).
[CrossRef]

Kouba, J.

Kuno, M.

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Lalanne, P.

Larabell, C. A.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Le Gros, M. A.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

Levitt, B.

Lewis, D.

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Löchel, B.

Loncar, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011).
[CrossRef] [PubMed]

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef] [PubMed]

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Lounis, B.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Macklin, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Majumdar, A.

A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
[CrossRef]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Malko, A. V.

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

McCutcheon, M. W.

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

McDonald, A. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Meijerink, A.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Micheel, C.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2007).

Milonni, P. W.

P. W. Milonni, J. H. Eberly, Laser Physics (Wiley, 2010).
[CrossRef]

Min, B.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Misawa, H.

Moerner, W. E.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Mokari, T.

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Nair, G.

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

Nanda, J.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Naviaux, R. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Nedeljkovic, J.

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Nesbitt, D.

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Nirmal, M.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Nishijima, Y.

Nocera, D. G.

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Norris, D.

S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996).
[CrossRef]

Nozik, A. J.

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Okamoto, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Otsuka, S.

Painter, O.

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Parak, W. J.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Pellegrino, T.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Peng, X.

L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).
[CrossRef] [PubMed]

Peyrade, D.

Picard, E.

Piryatinski, A.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qu, L.

L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).
[CrossRef] [PubMed]

Quan, Q.

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Rakher, M. T.

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

Rivoire, K.

K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
[CrossRef]

Rodier, J. C.

Rumbles, G.

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Rundquist, A.

A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
[CrossRef]

Scherer, A.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Shah, J.

Smith, H. I.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

Smith, Henry I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Snee, P. T.

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Sorel, M.

Srinivasan, K.

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Stingl, J.

Sundar, V.

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

Sundar, V. C.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

Tam, W.-M.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Tretiak, S.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Vahala, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Van den Heuvel, D. J.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

van Lingen, J. N. J.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

Velha, P.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Vuckovic, J.

A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
[CrossRef]

K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
[CrossRef]

Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Waks, E.

Walls, D. F.

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2007).

Walsh, M.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Williams, S. C.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Wong, C. W.

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Xu, J.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Yamamoto, Y.

O. Benson, Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
[CrossRef]

Yang, L.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

Yang, X.

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

Zain, A. R.

Zanchet, D.

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Zhang, Y.

Zhao, J.

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

Zhu, T.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Adv. Mater. (2)

P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

M. Kazes, D. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317 (2002).
[CrossRef]

Appl. Phys. Lett. (12)

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80, 4614 (2002).
[CrossRef]

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[CrossRef]

H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, V. I. Klimov, “Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots,” Appl. Phys. Lett. 82, 4776 (2003).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007).
[CrossRef]

I. Fushman, D. Englund, J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Spectroscopy of 1.55μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, “Enhanced spontaneous emission at 1.55μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Y. Gong, J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

A. Rundquist, A. Majumdar, J. Vuckovic, “Off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 99, 251907 (2011).
[CrossRef]

K. Rivoire, S. Buckley, J. Vuckovic, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, 013114 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Biomed. Microdevices (1)

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7, 331–339 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Bjork, Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Qu, X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[CrossRef]

J. Phys. Chem. B (4)

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, V. I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

S. A. Empedocles, M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105, 8281–8284 (2001).
[CrossRef]

M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” J. Phys. Chem. B 107, 11346–11352 (2003).
[CrossRef]

Los Alamos Science (1)

V. I. Klimov, “From fundamental photophysics to multicolor lasing,” Los Alamos Science 28, 214–220 (2003).

Nanotechnology (1)

W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, “Biological applications of colloidal nanocrystals,” Nanotechnology 14, R15–R27 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

M. T. Hill, “Nanophotonics: lasers go beyond diffraction limit,” Nat. Nanotechnol. 4, 706–707 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, “Enhanced single-photon emission from a diamondsilver aperture,” Nat. Photonics 5, 738–743 (2011).
[CrossRef]

Nature (3)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, E. P. Ippen, “Microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Opt. Express (9)

Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, “High-Q/V air-mode photonic crystal cavities at microwave frequencies,” Opt. Express 19, 9371–9377 (2011).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786 (2011).
[CrossRef] [PubMed]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19, 17683–17690 (2011).
[CrossRef] [PubMed]

S. Gupta, E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21, 29612–29619 (2013).
[CrossRef]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090–16096 (2007).
[CrossRef] [PubMed]

A. R. Zain, N. P. Johnson, M. Sorel, R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[CrossRef] [PubMed]

Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef] [PubMed]

M. Barth, J. Kouba, J. Stingl, B. Löchel, O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231–17240 (2007).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

O. Benson, Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

Phys. Rev. B (2)

J.-M. Caruge, Y. Chan, V. Sundar, H. Eisler, M. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots,” Phys. Rev. B 70, 1–7 (2004).
[CrossRef]

M. Kuno, D. Fromm, S. Johnson, A. Gallagher, D. Nesbitt, “Modeling distributed kinetics in isolated semiconductor quantum dots,” Phys. Rev. B 67, 1–15 (2003).
[CrossRef]

Phys. Rev. B, (1)

D. Norris, M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B, 53, 16338–16346 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

S. Empedocles, D. Norris, M. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

H. Htoon, J. Hollingsworth, R. Dickerson, V. Klimov, “Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods,” Phys. Rev. Lett. 91, 1–4 (2003).
[CrossRef]

J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, “Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking,” Phys. Rev. Lett. 104, 1–4 (2010).
[CrossRef]

Science (4)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933 (1996).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Quantization of multiparticle Auger Rates in semiconductor quantum dots,” Science 287, 1011–1013 (2000).
[CrossRef] [PubMed]

Top. of Appl. Phys. (1)

J. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Top. of Appl. Phys. 90, 283–327 (2003).

Other (3)

D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2007).

P. W. Milonni, J. H. Eberly, Laser Physics (Wiley, 2010).
[CrossRef]

V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a laser composed of nanocrystal quantum dots coupled to an optical cavity. (b) Level diagram for a four-level model of a nanocrystal quantum dot.

Fig. 2
Fig. 2

(a) Nth as a function of pump rate for Vm = 0.01μm3, 1 μm3 and 100μm3, γa = 1/300 ps−1. (b) Nopt for different mode-volumes for γa = 1/300 ps−1.

Fig. 3
Fig. 3

(a) Laser output power as a function of the absorbed pump power for Vm = 0.01μm3 and 100μm3. (b) Threshold absorbed pump power as a function of mode-volume. (c) η as a function of mode-volume.

Fig. 4
Fig. 4

Spontaneous emission coupling efficiency for single-exciton transition β̄X and biexciton transition β̄XX as a function of Vm for γa = 1/300 ps−1

Fig. 5
Fig. 5

The electric field intensity (|E|2) of the resonant cavity mode of a nanobeam photonic crystal cavity. The seven holes in the center form the cavity defect.

Fig. 6
Fig. 6

(a) Output power as a function of the absorbed pump power for nanocrystal quantum dot laser comprised of nanobeam photonic crystal cavity, using γa = 1/300 ps−1 and 0, both with and without uniform-field approximation (abbreviated as UFA in the legend). (b) η as a function of mode-volume under the uniform-field approximation for εeff = 1.9 and Q = 64,000.

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

F ( r 0 ) = 1 + 2 g 2 ( r 0 ) γ 0 K X X
g ( r 0 ) = μ e ^ h ¯ h ¯ ω c 2 ε 0 V m | E ( r 0 ) | | E ( r ) | max
ρ t = i h ¯ [ ρ , H ] + L ρ
H cavity = h ¯ ω c a ^ a
H NQD = m = 1 N h ¯ ω m X ( σ 22 , m + σ 33 , m ) + h ¯ ω m X X σ 44 , m
H JC = i = m N h ¯ g m X ( r m ) ( σ 21 , m a + σ 12 , m a + σ 31 , m a + σ 13 , m a ) + h ¯ g m X X ( r m ) ( σ 42 , m a + σ 24 , m a + σ 43 , m a + σ 34 , m a )
n 1 ( r ) t = Γ X ( r ) [ ( p + 1 ) ( n 2 ( r ) + n 3 ( r ) ) 2 p n 1 ( r ) ] + γ 0 [ n 2 ( r ) + n 3 ( r ) ] 2 R n 1 ( r )
n 2 ( r ) t = Γ X ( r ) [ ( p + 1 ) n 2 ( r ) p n 1 ( r ) ] + Γ X X ( r ) [ ( p + 1 ) n 4 ( r ) p n 2 ( r ) ] γ 0 n 2 ( r ) + γ 2 n 4 ( r ) + R [ n 1 ( r ) n 2 ( r ) ]
n 3 ( r ) t = Γ X ( r ) [ ( p + 1 ) n 3 ( r ) p n 1 ( r ) ] + Γ X X ( r ) [ ( p + 1 ) n 4 ( r ) p n 3 ( r ) ] γ 0 n 3 ( r ) + γ 2 n 4 ( r ) + R [ n 1 ( r ) n 3 ( r ) ]
n 4 ( r ) t = Γ X X ( r ) [ 2 ( p + 1 ) n 4 ( r ) p ( n 2 ( r ) + n 3 ( r ) ) ] 2 γ 2 n 4 ( r ) + R [ n 2 ( r ) + n 3 ( r ) ]
p t = p κ + p G ( p ) + α ( p )
G ( p ) = d 3 r { Γ X ( r ) [ n 2 ( r ) + n 3 ( r ) 2 n 1 ( r ) ] + Γ X X ( r ) [ 2 n 4 ( r ) n 2 ( r ) n 3 ( r ) ] }
α ( p ) = d 3 r { Γ X ( r ) [ n 2 ( r ) + n 3 ( r ) ] + 2 Γ X X ( r ) n 4 ( r ) }
P abs = h ¯ ω p R V p d 3 r [ 2 n 1 ( r ) + n 2 ( r ) + n 3 ( r ) ]
P out = h ¯ ω c p κ
β X ( r ) = Γ X ( r ) Γ X ( r ) + γ 0
β X X ( r ) = Γ X X ( r ) Γ X X ( r ) + γ 2
Γ ¯ i = 1 V m d 3 r Γ i ( r ) = 2 g o 2 K i
ε eff = d 3 r | E ( r ) | 2 ε ( r ) d 3 r | E ( r ) | 2
N 1 t = Γ ¯ X [ ( p + 1 ) ( N 2 + N 3 ) 2 p N 1 ] + γ 0 ( N 2 + N 3 ) 2 R N 1
N 2 t = Γ ¯ X [ ( p + 1 ) N 2 p N 1 ] + Γ ¯ X X [ ( p + 1 ) N 4 p N 2 ] γ 0 N 2 + γ 2 N 4 + R ( N 1 N 2 )
N 3 t = Γ ¯ X [ ( p + 1 ) N 3 p N 1 ] + Γ ¯ X X [ ( p + 1 ) N 4 p N 3 ] γ 0 N 3 + γ 2 N 4 + R ( N 1 N 3 )
N 4 t = Γ ¯ X X [ 2 ( p + 1 ) N 4 p ( N 2 + N 3 ) ] 2 γ 2 N 4 + R ( N 2 + N 3 )
p t = p κ + p G ¯ ( p ) + α ¯ ( p )
G ¯ ( p ) = Γ ¯ X ( N 2 + N 3 2 N 1 ) + Γ ¯ X X ( 2 N 4 N 2 N 3 )
α ¯ ( p ) = Γ ¯ X ( N 2 + N 3 ) + 2 Γ ¯ X X N 4
P ¯ abs = h ¯ ω p R ( 2 N 1 + N 2 + N 3 )
β ¯ X = Γ ¯ X Γ X + γ 0
β ¯ X X = Γ ¯ X X Γ X X + γ 2
L NQD ρ = m = 1 N γ 0 , m 2 ( 2 σ 12 , m ρ σ 21 , m σ 21 , m σ 12 , m ρ ρ σ 21 , m σ 12 , m + 2 σ 13 , m ρ σ 31 , m σ 31 , m σ 13 , m ρ ρ σ 31 , m σ 13 , m ) + γ 2 , m 2 ( 2 σ 24 , m ρ σ 42 , m σ 42 , m σ 24 , m ρ ρ σ 42 , m σ 24 , m + 2 σ 34 , m ρ σ 43 , m σ 43 , m σ 34 , m ρ ρ σ 43 , m σ 34 , m )
L pump ρ = m = 1 N R 2 ( 2 σ 21 , m ρ σ 12 , m σ 12 , m σ 21 , m ρ ρ σ 12 , m σ 21 , m + 2 σ 31 , m ρ σ 13 , m σ 13 , m σ 31 , m ρ ρ σ 13 , m σ 31 , m + 2 σ 42 , m ρ σ 24 , m σ 24 , m σ 42 , m ρ ρ σ 24 , m σ 42 , m + 2 σ 43 , m ρ σ 34 , m σ 34 , m σ 43 , m ρ ρ σ 34 , m σ 43 , m )
L cavity ρ = κ 2 ( 2 a ρ a a a ρ ρ a a )
ρ 1 p , 1 p m t = i g m p ( ρ 1 p , 2 p 1 m ρ 2 p 1 , 1 p m + ρ 1 p , 3 p 1 m ρ 3 p 1 , 1 p m ) 2 R ρ 1 p , 1 p m + γ 0 ( ρ 2 p , 2 p m + ρ 3 p , 3 p m ) + κ ( ( p + 1 ) ρ 1 p + 1 , 1 p + 1 m p ρ 1 p , 1 p m )
ρ 2 p , 2 p m t = i g m ( p + 1 ( ρ 2 p , 1 p + 1 m ρ 1 p + 1 , 2 p m ) + p ( ρ 2 p , 4 p 1 m ρ 4 p 1 , 2 p m ) ) ( γ 0 + R ) ρ 2 p , 2 p m + R ρ 1 p , 1 p m + γ 2 ρ 4 p , 4 p m + κ ( ( p + 1 ) ρ 2 p + 1 , 2 p + 1 m p ρ 2 p , 2 p m )
ρ 3 p , 3 p m t = i g m ( p + 1 ( ρ 3 p , 1 p + 1 m ρ 1 p + 1 , 3 p m ) + p ( ρ 3 p , 4 p 1 m ρ 4 p 1 , 3 p m ) ) ( γ 0 + R ) ρ 3 p , 3 p m + R ρ 1 p , 1 p m + γ 2 ρ 4 p , 4 p m + κ ( ( p + 1 ) ρ 3 p + 1 , 3 p + 1 m p ρ 3 p , 3 p m )
ρ 4 p , 4 p m t = i g m p + 1 ( ρ 4 p , 2 p + 1 m ρ 2 p + 1 , 4 p m + ρ 4 p , 3 p + 1 m ρ 3 p + 1 , 4 p m ) 2 γ 2 ρ 3 p , 3 p m + R ( ρ 2 p , 2 p m + ρ 3 p , 3 p m ) + κ ( ( p + 1 ) ρ 3 p + 1 , 3 p + 1 m p ρ 3 p , 3 p m )
ρ 1 p , 2 p 1 m t = i g m p ( ρ 1 p , 1 p m ρ 2 p 1 , 2 p 1 m ) K X ρ 1 p , 2 p 1 m
ρ 2 p , 4 p 1 m t = i g m p ( ρ 2 p , 2 p m ρ 4 p 1 , 4 p 1 m ) K X X ρ 2 p , 4 p 1 m
ρ 1 p , 3 p 1 m t = i g m p ( ρ 1 p , 1 p m ρ 3 p 1 , 3 p 1 m ) K X ρ 1 p , 3 p 1 m
ρ 3 p , 4 p 1 m t = i g m p ( ρ 3 p , 3 p m ρ 4 p 1 , 4 p 1 m ) K X X ρ 3 p , 4 p 1 m
ρ 1 p , 1 p m t = 2 g m 2 K X ( ρ 2 p 1 , 2 p 1 m + ρ 3 p 1 , 3 p 1 m 2 ρ 1 p , 1 p m ) p 2 R ρ 1 p , 1 p m + γ 0 ( ρ 2 p , 2 p m + ρ 3 p , 3 p m ) + κ ( ( p + 1 ) ρ 1 p + 1 , 1 p + 1 m p ρ 1 p , 1 p m )
ρ 2 p , 2 p m t = 2 g m 2 K X ( ρ 2 p , 2 p m ρ 1 p + 1 , 1 p + 1 m ) ( p + 1 ) + 2 g m 2 K X X ( ρ 4 p 1 , 4 p 1 m ρ 2 p , 2 p m ) p ( γ 0 + R ) ρ 2 p , 2 p m + R ρ 1 p , 1 p m + γ 2 ρ 4 p , 4 p m + κ ( ( p + 1 ) ρ 2 p + 1 , 2 p + 1 m p ρ 2 p , 2 p m )
ρ 3 p , 3 p m t = 2 g m 2 K X ( ρ 3 p , 3 p m ρ 1 p + 1 , 1 p + 1 m ) ( p + 1 ) + 2 g m 2 K X X ( ρ 4 p 1 , 4 p 1 m ρ 3 p , 3 p m ) p ( γ 0 + R ) ρ 3 p , 3 p m + R ρ 1 p , 1 p m + γ 2 ρ 4 p , 4 p m + κ ( ( p + 1 ) ρ 3 p + 1 , 3 p + 1 m p ρ 3 p , 3 p m )
ρ 4 p , 4 p m t = 2 g m 2 K X X ( 2 ρ 4 p , 4 p m ρ 2 p + 1 , 2 p + 1 m ρ 3 p + 1 , 3 p + 1 m ) ( p + 1 ) 2 γ 2 ρ 4 p , 4 p m + R ( ρ 2 p , 2 p m + ρ 3 p , 3 p m ) + κ ( ( p + 1 ) ρ 4 p + 1 , 4 p + 1 m p ρ 4 p , 4 p m )
ρ 11 m t = 2 g m 2 K X ( ρ 22 m + ρ 33 m 2 ρ 11 m ) p + 2 g 2 K X ( ρ 22 m + ρ 33 m ) 2 R ρ 11 m + γ 0 ( ρ 22 m + ρ 33 m )
ρ 22 m t = 2 g m 2 K X ( ρ 22 m ρ 11 m ) p + 2 g m 2 K X X ( ρ 44 m ρ 22 m ) p 2 g m 2 K X ρ 22 m + 2 g m 2 K X X ρ 44 m ( γ 0 + R ) ρ 22 m + R ρ 11 m + γ 2 ρ 44 m
ρ 33 m t = 2 g m 2 K X ( ρ 33 m ρ 11 m ) p + 2 g m 2 K X X ( ρ 44 m ρ 33 m ) p 2 g m 2 K X ρ 33 m + 2 g m 2 K X X ρ 44 m ( γ 0 + R ) ρ 33 m + R ρ 11 m + γ 2 ρ 44 m
ρ 44 m t = 2 g m 2 K X X ( 2 ρ 44 m ρ 22 m ρ 33 m ) p 4 g m 2 K X X ρ 44 m 2 γ 2 ρ 44 m + R ( ρ 22 m + ρ 33 m )
p ˙ = p p ρ ˙ p p
p ˙ = m p p { 2 g m 2 K X ( ρ 2 p 1 , 2 p 1 m ρ 1 p , 1 p m ) p 2 g m 2 K X ( ρ 2 p , 2 p m ρ 1 p + 1 , 1 p + 1 m ) ( p + 1 ) + 2 g m 2 K X ( ρ 3 p 1 , 3 p 1 m ρ 1 p , 1 p m ) p 2 g m 2 K X ( ρ 3 p , 3 p m ρ 1 p + 1 , 1 p + 1 m ) ( p + 1 ) + 2 g m 2 K X X ( ρ 4 p 1 , 4 p 1 m ρ 2 p , 2 p m ) p 2 g m 2 K X X ( ρ 4 p , 4 p m ρ 2 p + 1 , 2 p + 1 m ) ( p + 1 ) + 2 g m 2 K X X ( ρ 4 p 1 , 4 p 1 m ρ 3 p , 3 p m ) p 2 g m 2 K X X ( ρ 4 p , 4 p m ρ 3 p + 1 , 3 p + 1 m ) ( p + 1 ) κ ( p ρ p p ( p + 1 ) ρ p + 1 p + 1 ) }
p ˙ = κ p + m { 2 g m 2 K X ( ρ 22 m + ρ 33 m 2 ρ 11 m ) p + 2 g m 2 K X X ( 2 ρ 44 m ρ 22 m ρ 33 m ) p + 2 g m 2 K X ( ρ 22 m + ρ 33 m ) + 4 g m 2 K X X ρ 44 m }
N 1 = ( ( p + 1 ) Γ ¯ X + γ 0 p Γ X + R ) N 2 ζ
N 2 = N 3 = N 2 ζ
N 4 = ( p Γ ¯ X X + R ( p + 1 ) Γ ¯ X X + γ 2 ) N 2 ζ
ζ = ( p + 1 ) Γ ¯ X + γ 0 2 ( p Γ ¯ X + R ) + 1 + p Γ ¯ X X + R 2 ( ( p + 1 ) Γ ¯ X X + γ 2 )
N th = ω c Q ( Γ ¯ X + γ 0 2 R + 1 + R 2 Γ ¯ X X + 2 γ 2 Γ ¯ X ( 1 Γ ¯ X + γ 0 R ) + Γ ¯ X X ( R Γ ¯ X X + γ 2 1 ) )

Metrics