Abstract

We present a GPU accelerated toolbox for shaping the light propagation through multimode fibre using a spatial light modulator (SLM). The light is modulated before being coupled to the proximal end of the fibre in order to achieve arbitrary light patterns at the distal end of the fibre. First, the toolbox optimises the acquisition time of the transformation matrix of the fibre by synchronous operation of CCD and SLM. Second, it uses the acquired transformation matrix retained within the GPU memory to design, in real-time, the desired holographic mask for on-the-fly modulation of the output light field. We demonstrate the functionality of the toolbox by acquiring the transformation matrix at the maximum refresh rate of the SLM - 204Hz, and using it to display an on-demand oriented cube, at the distal end of the fibre. The user-controlled orientation of the cube and the corresponding holographic mask are obtained in 20ms intervals. Deleterious interference effects between the neighbouring points are eliminated by incorporating an acousto-optic deflector (AOD) into the system. We remark that the usage of the toolbox is not limited to multimode fibres and can be readily used to acquire transformation matrix and implement beam-shaping in any other linear optical system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Thompson, C. Paterson, M. A. Neil, C. Dunsby, P. M. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707–1709 (2011).
    [CrossRef] [PubMed]
  2. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
    [CrossRef] [PubMed]
  3. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
    [CrossRef] [PubMed]
  4. R. Di Leonardo, S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19, 247–254 (2011).
    [CrossRef] [PubMed]
  5. T. Čižmár, K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
    [CrossRef] [PubMed]
  6. T. Čižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [CrossRef] [PubMed]
  7. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [CrossRef] [PubMed]
  8. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [CrossRef] [PubMed]
  9. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Increasing the imaging capabilities of multimode fibers by exploiting theproperties of highly scattering media,” Opt. Lett. 38, 2776–2778 (2013).
    [CrossRef] [PubMed]
  10. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
    [CrossRef] [PubMed]
  11. R. Nasiri, Mahalati, R. Y. Gu, J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21, 1656–1668 (2013).
    [CrossRef]
  12. Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013).
    [CrossRef] [PubMed]
  13. S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
    [CrossRef]
  14. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [CrossRef] [PubMed]
  15. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12887 (2013).
    [CrossRef] [PubMed]
  16. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [CrossRef] [PubMed]
  17. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
    [CrossRef] [PubMed]
  18. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
    [CrossRef]

2013 (5)

2012 (5)

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

T. Čižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[CrossRef] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[CrossRef]

2011 (4)

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

2009 (1)

2005 (2)

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Anderson, E. P.

Bianchi, S.

S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[CrossRef]

R. Di Leonardo, S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19, 247–254 (2011).
[CrossRef] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Bowman, R.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Cižmár, T.

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
[CrossRef] [PubMed]

Conkey, D. B.

Cui, M.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Dholakia, K.

Di Leonardo, R.

S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[CrossRef]

R. Di Leonardo, S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19, 247–254 (2011).
[CrossRef] [PubMed]

Dunsby, C.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Flusberg, B. A.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

French, P. M.

Gibson, G.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Gu, R. Y.

Jung, J. C.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Kahn, J. M.

Kim, M.

Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Linnenberger, A.

Mahalati,

Moser, C.

Nasiri, R.

Neil, M. A.

Niv, E.

Padgett, M.

Papadopoulos, I. N.

Paterson, C.

Piestun, R.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Preece, D.

Psaltis, D.

Schnitzer, M. J.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Serati, S.

Thompson, A. J.

Yang, J.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Lab Chip (1)

S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[CrossRef]

Nat. Commun. (1)

T. Čižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[CrossRef] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

R. Di Leonardo, S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19, 247–254 (2011).
[CrossRef] [PubMed]

T. Čižmár, K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[CrossRef] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[CrossRef] [PubMed]

R. Nasiri, Mahalati, R. Y. Gu, J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21, 1656–1668 (2013).
[CrossRef]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12887 (2013).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (2137 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser light from Verdi (5W; λ = 532nm) is magnified by a telescope in order to overfill the SLM plane. The complex superposition of two gratings and subsequent extraction of phase from the resulting complex matrix is applied on the phase-only SLM. The first grating generates a spot in (u, v) at the input facet of MMF (Thorlabs M14L01), the second grating focuses a spot on the input to SMF. The output fields from SMF and MMF are interfered on the CCD and the image is sent to the GPU memory. The phase of the spot in (u, v) is changed N times over a 2πn range and the whole process is repeated for all input modes (u, v) of the MMF. The resulting images are used to extract the phase and amplitude matrix Muv(x, y) of the output field in any point (x, y). Applying FFT to Muv(x, y) creates a hologram generating field at the fibre input side that results in a well defined spot in (x, y) at the fibre output.

Fig. 2
Fig. 2

The beam deflected by AOD impinges on the SLM at an angle given by the current frequency of AOD. The hologram on the SLM consists of the complex superposition of masks focusing light to different spots (x, y) at the fibre output. Each of the constituting masks has an added grating that cancels out one specific angle introduced by the AOD. Subsequently, only the input field corresponding to a mask with the right correction angle for a given AOD deflection will propagate through the fibre. In this way we can cycle between the spots at the output with a maximum refresh rate of the AOD without introducing any interference effects between the output spots.

Fig. 3
Fig. 3

Projected 3D cube, created using 120 output points, generated at the distal end of the MMF with a refresh rate of 50Hz. The contrast ratio of the cube lines to the fibre background light is 20 : 1 ( Media 1).

Fig. 4
Fig. 4

The FFT resolution influences the contrast and computational time of the generated pattern. The contrast is significantly worse only for 32 × 32 and 64 × 64 FFT and the computational time is significantly longer only for 512 × 512 FFT case. Therefore, the optimal trade-off between speed and contrast is for 128 × 128 or 256 × 256 FFT.

Fig. 5
Fig. 5

Options panel allows to setup paths to the DLL library that contains functions to be called and also path to files necessary for AOD operation.

Fig. 6
Fig. 6

Main calibration panel

Fig. 7
Fig. 7

Cube control and information panel.

Metrics