Abstract

We numerically and experimentally investigate the field invasiveness of microwave signals using an electro-optic technique. The distortion of the standing wave voltage and pulse waveform probed by the electro-optic technique is explored through both minimally invasive external and non-invasive internal sensing configurations. First, we analyzed the continuous wave microwave field imaging on a millimeter- scale coaxial transmission line using a highly accurate and stable electro- optic scanning system. The electric field images from the microwave device are attained virtually non-invasively using a miniaturized fiber-coupled electro-optic probe. The accuracy of the field imaging associated with various probe styles is investigated by numerical analysis and experiment. Then, we analyzed the waveform of the coaxial transmission line up to 50 GHz using a pulsed electro-optic system with an external probe set. Finally, the invasive analysis was extended to the sub-millimeter-scale on-wafer coplanar waveguides, where the voltage waveforms are measured using a minimally invasive external probe as well as an internal wafer probe for non-invasive sampling.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
    [CrossRef]
  2. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1984) Chap. 8.
  3. D. J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
    [CrossRef] [PubMed]
  4. D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
    [CrossRef] [PubMed]
  5. P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
    [CrossRef]
  6. H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
    [CrossRef]
  7. A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
    [CrossRef]
  8. H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
    [CrossRef]
  9. D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
    [CrossRef]
  10. D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
    [CrossRef]
  11. S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
    [CrossRef]
  12. H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
    [CrossRef]
  13. D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
    [CrossRef]
  14. M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013).
    [CrossRef]
  15. M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
    [CrossRef]
  16. N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
    [CrossRef]

2013 (1)

M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013).
[CrossRef]

2012 (4)

D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
[CrossRef]

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

2011 (2)

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

2009 (2)

A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
[CrossRef]

2008 (1)

2007 (1)

H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
[CrossRef]

2006 (1)

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

2005 (1)

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

1998 (1)

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

1993 (1)

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

Baaske, K.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Bieler, M.

M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013).
[CrossRef]

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
[CrossRef]

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Bolivar, P. H.

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

Choi, J. H.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

Clement, T. S.

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

Cormos, D. A.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Dib, N. I.

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

Duvillaret, L.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Eichstadt, S.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Elster, C.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Fuser, H.

M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013).
[CrossRef]

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Gaborit, G.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Garzarella, A.

A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
[CrossRef]

Gupta, M. G.

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

Hale, P. D.

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

Hein, G.

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Heinrich, W.

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Jamshidifar, H.

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

Jarrige, P.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Judaschke, R.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Kang, N. W.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

Katehi, L. P. B.

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

Kim, J. Y.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

Kohler, S.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Kuhlmann, K.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Kwon, J. Y.

D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
[CrossRef]

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

Lee, D. J.

D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
[CrossRef]

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

D. J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
[CrossRef] [PubMed]

Lee, J. G.

D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
[CrossRef]

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

Leveque, P.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Morgan, J. M.

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

Nagatsuma, T.

H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
[CrossRef]

O’Connor, R. P.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Pierz, K.

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
[CrossRef]

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Ponchak, G. E.

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

Qadri, S. B.

A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Schafer, H.

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

Schmückle, F. J.

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Seitz, S.

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Shimizu, N.

H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
[CrossRef]

Siegner, U.

M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
[CrossRef]

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Spickermann, G.

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

Ticaud, N.

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
[CrossRef]

Whitaker, J. F.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

D. J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
[CrossRef] [PubMed]

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Williams, D. F.

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
[CrossRef]

Yang, K.

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011).
[CrossRef]

P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993).
[CrossRef]

D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013).
[CrossRef]

Prog. Electromagn. Res. Lett. (1)

D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012).
[CrossRef]

Sensors (Basel) (1)

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011).
[CrossRef] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1984) Chap. 8.

Supplementary Material (3)

» Media 1: AVI (3779 KB)     
» Media 2: AVI (3816 KB)     
» Media 3: AVI (3880 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Bulky and micro fiber-coupled EO probes. (a) The assembled bulky probe (Probe A) and micro probe (Probe B) positioned over the CPW line, and (b) the schematic cross section of Probes A and B used for the field simulation.

Fig. 2
Fig. 2

HFSS-simulated field distribution over the CPW line with Probes A and B, made of LiTaO3 and GaAs, where left and right columns show the horizontal and vertical planes, respectively.

Fig. 3
Fig. 3

The relative field invasiveness of Probes A and B made of LiTaO3 and GaAs at the crossed line of the horizontal and vertical planes in Fig. 2.

Fig. 4
Fig. 4

The normalized field distribution of a standing wave over the short-terminated CPW transmission line. (a) Photograph of the line and scan area. (b) Scanned field image with Probe A (Media 1 for the amplitude-phase animation). (c) Scanned field image with Probe B (Media 2 for the amplitude-phase animation). (d) Simulated field image with HFSSTM (Media 3 for the amplitude-phase animation). (e–g) Views of (b–d) at log scale.

Fig. 5
Fig. 5

The normalized incident and echo pulses at the measurement plane of the 100-mm long CPW line with Probes C and D.

Fig. 6
Fig. 6

The detailed view of Fig. 5 showing (a) the incident pulse and (b) the primary and secondary echoes.

Fig. 7
Fig. 7

The normalized spectra of the pulse train in Fig. 5 using the fast Fourier transform.

Fig. 8
Fig. 8

The normalized incident and echo pulses at the measurement plane of the 200-mm long CPW line with Probes C and D.

Fig. 9
Fig. 9

The normalized spectra of the incident pulses in Fig. 8.

Fig. 10
Fig. 10

The difference between each spectrum in Fig. 9 comparing the probe invasiveness.

Fig. 11
Fig. 11

The on-wafer internal EO configuration for non-invasive pulse sampling.

Fig. 12
Fig. 12

The internally sampled EO data set measured at different propagation lengths on the wafer for (a) the normalized pulses with offsets and (b) their corresponding spectra.

Fig. 13
Fig. 13

The sampled EO pulses measured at L = 20 mm on the wafer with both the internal and external schemes showing the (a) normalized pulses and (b) the differences between the externally sampled spectra with respect to the internally sampled spectrum.

Metrics