Abstract

We report on a new textile metamaterial created by adding metal wires directly into the polymer yarn. Split-ring resonator-like extended states are created. Simulations revealed that the extended states can be easily tuned via the geometry. Measurements of the transmittance spectrum as a function of the polarization angle in the low terahertz range were also performed and these peaks were ascribed to a polarization-dependent resonator model. The fabrics are viable candidates for flexible and deformable gigahertz and terahertz-enabled metamaterials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design, (John Wiley, 2000).
  2. D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
    [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  6. W. J. Padilla, D. R. Smith, D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23(3), 404–414 (2006).
    [CrossRef]
  7. H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
    [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  10. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  11. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  12. P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
    [CrossRef]
  13. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).
  14. J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
    [CrossRef]
  15. E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
    [CrossRef]
  16. M. N. Asfar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,” IEEE Trans. Instrum. Meas. 36(2), 530–536 (1987).
  17. I. Dunayevskiy, B. Bortnik, K. Geary, R. Lombardo, M. Jack, H. Fetterman, “Millimeter- and submillimeter-wave characterization of various fabrics,” Appl. Opt. 46(24), 6161–6165 (2007).
    [CrossRef] [PubMed]
  18. G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
    [CrossRef] [PubMed]
  19. S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).
  20. D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
    [CrossRef]
  21. R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
    [CrossRef]
  22. A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
    [CrossRef]
  23. M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
    [CrossRef]
  24. M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).
  25. Specialty Product: ICON-75,” http://www.eytechnologies.com/icon-75.html .
  26. D. DiGiovanni and A. Gatesman, personal communication.
  27. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” J. Infrared Millimeter Terahertz Waves 17(12), 1997–2034 (1996).
    [CrossRef]
  28. COMSOL,” http://www.comsol.com/ .
  29. J. W. S. Hearle, P. Grosberg, and S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (John Wiley, 1969).
  30. M. Matsuo, T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J. 79(3), 275–284 (2009).
    [CrossRef]
  31. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys. 33(1), 33–38 (1992).
    [CrossRef]
  32. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).
  33. S. Fan, W. Suh, J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonances in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [CrossRef]

2013 (1)

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

2012 (3)

A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
[CrossRef]

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

2010 (1)

D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
[CrossRef]

2009 (3)

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

M. Matsuo, T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J. 79(3), 275–284 (2009).
[CrossRef]

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

2007 (1)

2006 (2)

W. J. Padilla, D. R. Smith, D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23(3), 404–414 (2006).
[CrossRef]

D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

2005 (1)

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

2004 (3)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” J. Infrared Millimeter Terahertz Waves 17(12), 1997–2034 (1996).
[CrossRef]

1993 (1)

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

1992 (1)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys. 33(1), 33–38 (1992).
[CrossRef]

1987 (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

M. N. Asfar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,” IEEE Trans. Instrum. Meas. 36(2), 530–536 (1987).

Alexopolous, N. G.

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Anbarasu, R.

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Appleby, R.

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).

Arokiaraj, P.

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Asfar, M. N.

M. N. Asfar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,” IEEE Trans. Instrum. Meas. 36(2), 530–536 (1987).

Basov, D. N.

Bhupathiraju, A. K.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

Birch, J. R.

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys. 33(1), 33–38 (1992).
[CrossRef]

Bjarnason, J. E.

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

Bortnik, B.

Brazis, R.

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

Broas, R. F. J.

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Brown, E. R.

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

Casse, B. D. F.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

Celis, A. M.

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

Chan, J. T. L.

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

Comlekci, S.

D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
[CrossRef]

Dasaradan, B. S.

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Debnath, P.

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

Dias, T.

A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
[CrossRef]

Dudzinska, S.

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

Dunayevskiy, I.

Fan, S.

Fetterman, H.

Fukunaga, K.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Geary, K.

Goktepe, O.

D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
[CrossRef]

Goldsmith, P. F.

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

Grossman, E. N.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

Harish, S. L.

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Hsieh, C. T.

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

Huguenin, G.

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

Hurley, W.

A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
[CrossRef]

Jack, M.

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kapitzky, J.

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

Kazakevicius, V.

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

Krucinska, I.

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” J. Infrared Millimeter Terahertz Waves 17(12), 1997–2034 (1996).
[CrossRef]

Lee, M. A. W.

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

Lombardo, R.

Lowe, D.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Maity, S.

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Matsuo, M.

M. Matsuo, T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J. 79(3), 275–284 (2009).
[CrossRef]

McCauley, R.

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

Michalak, M.

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

Miller, A. J.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

Mirotznik, M. S.

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Moore, E.

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

Moser, H. O.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pa, P.

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

Padilla, W. J.

W. J. Padilla, D. R. Smith, D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23(3), 404–414 (2006).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pastorelli, G.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Perumalraj, R.

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Portieri, A.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Reintsema, C. D.

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

Saw, B. T.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Sievenpepper, D.

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Singha, K.

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

Singha, M.

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

Smith, D. R.

W. J. Padilla, D. R. Smith, D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23(3), 404–414 (2006).
[CrossRef]

D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soyaslan, D.

D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Strlic, M.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Suh, W.

Taday, P. F.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Tennant, A.

A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
[CrossRef]

Trafela, T.

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wilhelmi, O.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

Yablonovitch, E.

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, T.

M. Matsuo, T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J. 79(3), 275–284 (2009).
[CrossRef]

Yarlagadda, S.

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, L.

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. Pastorelli, T. Trafela, P. F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, “Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging,” Anal. Bioanal. Chem. 403(5), 1405–1414 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. E. Bjarnason, J. T. L. Chan, M. A. W. Lee, A. M. Celis, E. R. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85(4), 519–521 (2004).
[CrossRef]

D. Schurig, J. J. Mock, D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Fibres Textiles E. Eur. (1)

M. Michalak, V. Kazakevicius, S. Dudzinska, I. Krucinska, R. Brazis, “Textiles embroidered with split-rings as barriers against microwave radiation,” Fibres Textiles E. Eur. 17(1), 66–70 (2009).

IEEE Electron. Lett. (1)

A. Tennant, W. Hurley, T. Dias, “Experimental knitted, textile frequency selective surfaces,” IEEE Electron. Lett. 48(22), 1386–1388 (2012).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. N. Asfar, “Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers,” IEEE Trans. Instrum. Meas. 36(2), 530–536 (1987).

IEEE Trans. Microwave Theory Tech. (3)

P. F. Goldsmith, C. T. Hsieh, G. Huguenin, J. Kapitzky, E. Moore, “Focal plane image systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41(10), 1664–1675 (1993).
[CrossRef]

D. Sievenpepper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

M. S. Mirotznik, S. Yarlagadda, R. McCauley, P. Pa, “Broadband electromagnetic modeling of woven fabric composites,” IEEE Trans. Microwave Theory Tech. 60(1), 158–169 (2012).
[CrossRef]

Infrared Phys. (1)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys. 33(1), 33–38 (1992).
[CrossRef]

J. Infrared Millimeter Terahertz Waves (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” J. Infrared Millimeter Terahertz Waves 17(12), 1997–2034 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Safety Eng. (1)

S. Maity, K. Singha, P. Debnath, M. Singha, “Textiles in electromagnetic radiation protection,” J. Safety Eng. 2(2), 11–19 (2013).

J. Text. Inst. (2)

D. Soyaslan, S. Comlekci, O. Goktepe, “Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935,” J. Text. Inst. 101(10), 890–897 (2010).
[CrossRef]

R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, S. L. Harish, “Electromagnetic shielding effectiveness of copper,” J. Text. Inst. 100(6), 512–524 (2009).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).

Phys. Rev. Lett. (5)

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. N. Grossman, A. K. Bhupathiraju, A. J. Miller, C. D. Reintsema, “Concealed weapons detection using an uncooled millimeter-wave microbolometer system,” Proc. SPIE 4719, 364–369 (2002).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Text. Res. J. (1)

M. Matsuo, T. Yamada, “Hysteresis of tensile load–strain route of knitted fabrics under extension and recovery processes estimated by strain history,” Text. Res. J. 79(3), 275–284 (2009).
[CrossRef]

Other (7)

B. A. Munk, Frequency Selective Surfaces: Theory and Design, (John Wiley, 2000).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

COMSOL,” http://www.comsol.com/ .

J. W. S. Hearle, P. Grosberg, and S. Backer, Structural Mechanics of Fibers, Yarns, and Fabrics (John Wiley, 1969).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).

Specialty Product: ICON-75,” http://www.eytechnologies.com/icon-75.html .

D. DiGiovanni and A. Gatesman, personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Top left) Microscope image of the woven fabric. Lengths A and B are 0.446 mm and 1.894 mm, respectively. (Top right) For the knitted fabric, A and B are 1.228 mm and 1.618 mm, respectively. Polarization directions indicated by white axes. (Bottom left) iCon wires in the woven fabric within the computational cell colored by height on the z-axis shown. (Bottom right) iCon wires in knitted fabric within the computational cell colored by height.

Fig. 2
Fig. 2

(a) Measured and simulated reflection (left) and transmission spectra (right) of the woven fabric for the y-polarization. (b) Measured and simulated reflection (left) and transmission spectra (right) for x- polarization. (c) Induced charges and current in a unit cell of the woven fabric for the x-polarization at the first resonant peak. Positive and negative surface charge red and blue, respectively. Current flows in a clockwise fashion. Incident plane wave wavevector and E-field indicated.

Fig. 3
Fig. 3

(a) Measured and simulated reflection (left) and transmission spectra (right) of the knitted fabric for the x-polarization. Tuning the effective index of the polypropylene layer can improve the match in the low frequency region. (b) Measured and simulated reflection (left) and transmission spectra (right) for the y-polarization.

Fig. 4
Fig. 4

(Left) Linear polarized normal incidence specular transmission spectrum in dB for the woven fabric at various polarization angles, (right) for the knitted fabric.

Tables (1)

Tables Icon

Table 1 Conductivity and Refractive Indices of Materials Used

Metrics