Abstract

We demonstrate a high efficiency reflective waveplate which exhibits incidence angle dependent phase shift tuning capabilities in the midwave infrared. Using Finite Difference Time Domain (FDTD) modeling, the phase shift and reflection efficiency are simulated for a variety of geometrical parameters, the results of which are then employed to optimize design. Devices were fabricated and both the polarization and efficiency characteristics were measured and compared to FDTD simulations showing excellent agreement. Further, the potential for scalability to other wavelength ranges and the capability to generate an arbitrary phase shift are explored to demonstrate the versatility of our design.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
    [CrossRef]
  2. G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
    [CrossRef] [PubMed]
  3. C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
    [CrossRef] [PubMed]
  4. A. Pors, S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [CrossRef] [PubMed]
  5. A. Roberts, L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [CrossRef] [PubMed]
  6. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [CrossRef] [PubMed]
  7. S. L. Wadsworth, G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express 19(11), 10604–10612 (2011).
    [CrossRef] [PubMed]
  8. N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

2013 (1)

2012 (4)

A. Roberts, L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[CrossRef] [PubMed]

2011 (1)

2005 (1)

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

1999 (1)

Absil, O.

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Amer, N.

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Boreman, G. D.

Bozhevolnyi, S. I.

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Deguzman, P. C.

Delacroix, C.

Einishi, T.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Forsberg, P.

Fukumi, K.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Habraken, S.

Hanot, C.

Hurlbut, C.

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Karlsson, M.

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Lee, Y.

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Lin, L.

Mawet, D.

Nishii, J.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Nordin, G. P.

Norris, T. B.

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Norton, B. J.

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Pors, A.

Roberts, A.

Saito, M.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Surdej, J.

Tani, K.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Wadsworth, S. L.

Yamada, N.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Yamashita, N.

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

N. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii, “Fabrication of achromatic infrared wave plate by direct imprinting process on chalcogenide glass,” Appl. Phys. Express 5(7), 072601 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

N. Amer, C. Hurlbut, B. J. Norton, Y. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87(22), 221111 (2005).
[CrossRef]

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of device with ray trace demonstrating path length difference for orthogonal polarization components. Light with E field parallel to grating (black dot) is efficiently reflected while that with E field perpendicular (arrow) propagates through the dielectric spacer.

Fig. 2
Fig. 2

Phase shift predictions of FDTD simulation and ray path model for 45 degree incidence angle.

Fig. 3
Fig. 3

Phase shift and reflection efficiency FDTD simulation results versus dielectric spacer height.

Fig. 4
Fig. 4

FDTD predicted phase shift versus incidence angle for various wavelengths of interest.

Fig. 5
Fig. 5

SEM image of device profile.

Fig. 6
Fig. 6

(a) Normalized measured signal versus polarizer angle. (b) FDTD simulated normalized results.

Fig. 7
Fig. 7

(a) Simulated and measured intensity radar plots for (a) 3.1 μm light at 45° incidence angle, (b) 3.3 μm light at 25° incidence, (c) 3.0 μm light at 55° incidence, and (d) 2.4 mm light at 25 o incidence.

Fig. 8
Fig. 8

FDTD simulated and measured reflection efficiency of fabricated device over OPO tuning range.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δφ= 2π λ ( 2h(n1) cos( sin 1 (1/nsin( θ 1 )) )
I(θ)= I 0 cos 2 (θα)
I( θ )=0.5( c ε 0 2 E 1 2 cos 2 (θ α 1 )+ c ε 0 2 E 2 2 cos 2 (θ α 2 ) )

Metrics