Abstract

A novel kind of Fabry–Pérot (FP) structure based on chirped sampled fiber Bragg grating (CSFBG) is proposed and demonstrated. In this structure, the regular chirped FBG (CFBG) that functions as reflecting mirror in the FP cavity is replaced by CSFBG, which is realized by chirping the sampling periods of a sampled FBG having uniform local grating period. The realization of such CSFBG-FPs having diverse properties just needs a single uniform pitch phase mask and sub-micrometer precision moving stage. Compared with the conventional CFBG-FP, it becomes more flexible to design CSFBG-FPs of diverse functions, and the fabrication process gets simpler. As a demonstration, based on the same experimental facilities, FPs with uniform FSR (~73pm) and chirped FSR (varying from 28pm to 405pm) are fabricated respectively, which shows good agreement with simulation results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Slavik, S. Doucet, S. LaRochelle, “High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol. 21(4), 1059–1065 (2003).
    [CrossRef]
  2. Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
    [CrossRef]
  3. Y. G. Han, X. Y. Dong, C. S. Kim, M. Y. Jeong, J. H. Lee, “Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tenability and its application to a multiwavelength fiber laser,” Opt. Express 15, 2921–2926 (2007).
  4. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
    [CrossRef]
  5. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]
  6. X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
    [CrossRef]
  7. X. W. Shu, K. Sugden, K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons,” Opt. Lett. 28(11), 881–883 (2003).
    [CrossRef] [PubMed]
  8. X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
    [CrossRef]
  9. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, J. Azaña, “Generation of a 4×100 GHz pulse-train from a single-wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion,” J. Lightwave Technol. 24(5), 2091–2099 (2006).
    [CrossRef]
  10. P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
    [CrossRef]
  11. W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
    [CrossRef]
  12. Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).
  13. B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
    [CrossRef]
  14. C. Wang, J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008).
    [CrossRef]
  15. P. Ou, Y. Zhang, C. X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
    [CrossRef] [PubMed]
  16. M. M. Sisto, M. E. M. Pasandi, and S. Doucet, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” the Fourth IASTED International Conference Antennas, Radar, and Wave Propagation, 238–243(2007).
  17. X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
    [CrossRef]
  18. Y. T. Dai, X. F. Chen, Y. Yao, D. J. Jiang, and S. Z. Xie, “Correction of the repeatable errors in the fabrication of sampled Bragg gratings,” in Proceedings of OFC2005, paper OME20(2005).

2012 (1)

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

2008 (3)

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

C. Wang, J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008).
[CrossRef]

P. Ou, Y. Zhang, C. X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[CrossRef] [PubMed]

J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, J. Azaña, “Generation of a 4×100 GHz pulse-train from a single-wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion,” J. Lightwave Technol. 24(5), 2091–2099 (2006).
[CrossRef]

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

2005 (2)

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

2004 (1)

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

2003 (2)

2000 (1)

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

1999 (1)

W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
[CrossRef]

Andrés, M. V.

Azaña, J.

Barmenkov, Y. O.

Bolger, J.

Byron, K.

Chan, H. L. W.

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Chen, L. R.

Chen, R. R.

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

Chen, X. F.

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Cruz, J. L.

Dong, X. W.

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Dong, X. Y.

Y. G. Han, X. Y. Dong, C. S. Kim, M. Y. Jeong, J. H. Lee, “Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tenability and its application to a multiwavelength fiber laser,” Opt. Express 15, 2921–2926 (2007).

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Doucet, S.

Du, W.

W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
[CrossRef]

Eggleton, B. J.

Fan, C. C.

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Guan, B. O.

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Guo, X.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Han, Y. G.

Jeong, M. Y.

Kim, C. S.

Lai, Y.

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

LaRochelle, S.

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Lee, J. H.

Leng, J. S.

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

Liu, W. K.

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Lu, C.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Luo, Y.

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Magné, J.

Ng, J. H.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Ng, K. H.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Ou, P.

Ran, Z. L.

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

Rao, Y. J.

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

Rochette, M.

Shu, X. W.

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Slavik, R.

Soh, Y. C.

Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Sugden, K.

Tam, H. Y.

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
[CrossRef]

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tao, X.

W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
[CrossRef]

Torres-Peiró, S.

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Wang, C.

C. Wang, J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008).
[CrossRef]

Wang, D. Y.

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Wang, Q. J.

Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Williams, J. A. R.

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

Won, P. C.

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

Wu, M. L.

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Wu, T.

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Xie, S. Z.

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Yang, X. F.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Yao, J. P.

C. Wang, J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008).
[CrossRef]

Zalvidea, D.

Zhang, C. X.

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Zhang, W.

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

Zhang, Y.

P. Ou, Y. Zhang, C. X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
[CrossRef] [PubMed]

Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Zhao, C. L.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Zhou, C. X.

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Zhou, X. Q.

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Zhu, T.

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

Chin. J. Lasers (1)

Y. J. Rao, C. X. Zhou, Z. L. Ran, T. Zhu, R. R. Chen, “SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings,” Chin. J. Lasers 33, 631–635 (2006).

IEEE Photon. Technol. Lett. (6)

B. O. Guan, H. Y. Tam, S. T. Lau, H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

C. Wang, J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008).
[CrossRef]

X. F. Chen, Y. Luo, C. C. Fan, T. Wu, S. Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Q. J. Wang, Y. Zhang, Y. C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

W. Du, X. Tao, H. Y. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon. Technol. Lett. 11(5), 596–598 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (2)

P. C. Won, Y. Lai, W. Zhang, J. S. Leng, J. A. R. Williams, “Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg gratings,” Opt. Commun. 265(2), 494–499 (2006).
[CrossRef]

X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. H. Ng, X. Guo, X. Q. Zhou, C. Lu, “Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot etalon formed by double FBGs,” Opt. Commun. 231(1-6), 227–231 (2004).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

X. W. Dong, W. K. Liu, D. Y. Wang, M. L. Wu, “Study on Fabry–Perot cavity consisting of two chirped fiber Bragg gratings,” Opt. Fiber Technol. 18(4), 209–214 (2012).
[CrossRef]

Opt. Lett. (1)

Other (2)

M. M. Sisto, M. E. M. Pasandi, and S. Doucet, “Optical phase and amplitude control for beamforming with multiwavelength Gires-Tournois Bragg grating cavities,” the Fourth IASTED International Conference Antennas, Radar, and Wave Propagation, 238–243(2007).

Y. T. Dai, X. F. Chen, Y. Yao, D. J. Jiang, and S. Z. Xie, “Correction of the repeatable errors in the fabrication of sampled Bragg gratings,” in Proceedings of OFC2005, paper OME20(2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Comparison between the conventional CFBG-FP and the proposed CSFBG-FP. (a) FP cavity consists of two identical FBGs. (b) FP cavity consists of two FBGs with different chirp-rates. Here d, Λ and P represent the longitudinal shift, the grating period and the sampling period respectively.

Fig. 2
Fig. 2

Simulation results of CSFBG FP with uniform FSR. (a) The sampling periods of CSFBGs and corresponding grating periods of linearly chirped + 1st order ghost gratings. (b) Spectrum of two CSFBGs superimposition. (c) Spectrum of + 1st order channel exhibiting FP characteristic, the red circles represent FSR values. (d) Group delay of + 1st order channel.

Fig. 3
Fig. 3

Experimental results of CSFBG FP with uniform FSR. (a) Spectrum of + 1st order channel exhibiting FP characteristic, the red circles represent FSR values. (b) Group delay of + 1st order channel. (c) FSR difference between simulation and experiment.

Fig. 4
Fig. 4

Simulation results of CSFBG FP with chirped FSR. (a) The sampling periods of CSFBGs and corresponding grating periods of linearly chirped + 1st order ghost gratings. (b) Spectrum of + 1st order channel exhibiting FP characteristic, the red circles represent FSR values. (c) Group delay of + 1st order channel.

Fig. 5
Fig. 5

Experimental results of CSFBG FP with chirped FSR. (a) Spectrum of + 1st order channel exhibiting FP characteristic, the red circles represent FSR values. (b) Group delay of + 1st order channel. (c) FSR difference between simulation and experiment.

Tables (2)

Tables Icon

Table 1 Parameters for FP with Uniform FSR

Tables Icon

Table 2 Parameters for FP with Chirped FSR

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δn(z)= δn ¯ eff (z){ 1+ 1 2 ν(z)S(z){ exp( j 2πz Λ +jϕ(z) )+c.c } }
S(z)= m F m exp(j 2mπ P z) m=0,1,
δn(z)= δn ¯ eff (z){ 1+ 1 2 ν(z) m F m { exp( j 2mπ P z )exp( j 2πz Λ )+c.c } } = δn ¯ eff (z)+ 1 2 m δn ¯ eff (z)ν(z ) F m exp( j( 2πz 1/ (1/ Λ+m/P ) ghost grating period ) )+c.c
δ n +1 (z)= δn ¯ eff (z)+ 1 2 δn ¯ eff (z)ν(z) F +1 exp( j( 2πz 1/ (1/Λ +1/P ) ) )+c.c
Λ +1 = 1 1 Λ + 1 P = Λ P P +Λ
P(z)= Λ Λ +1 (z) Λ Λ +1 (z)
P(z)= Λ Λ 1 (z) Λ 1 (z)Λ

Metrics