Abstract

A 10-Gbps optical worldwide interoperability for microwave access (WiMAX) transport system employing vertical cavity surface emitting laser (VCSEL) and spatial light modulator (SLM) with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. With the assistance of equalizer and low noise amplifier (LNA) at the receiving site, good bit error rate (BER) performance, clear constellation map, and clear eye diagram are achieved in the proposed systems. An optical WiMAX transport system, transmitting 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 10 Gbps is successfully demonstrated. Such a 10-Gbps optical WiMAX transport system would be attractive for providing services including Internet and telecommunication services. Our proposed system is suitable for the free-space lightwave transport system in visible light communication (VLC) application.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Lin, C. L. Lai, and Y. C. Huang, “Dynamic bandwidth allocation with QoS support for integrated EPON/WiMAX networks,” IEEE 14th International Conf. on High Performance Switching and Routing (HPSR) 74–79 (2013).
  2. N. Cvijetic and T. Wang, “WiMAX over free-space optics - evaluating OFDM multi-subcarrier modulation in optical wireless channels,” IEEE Sarnoff Symposium 1–4 (2006).
    [CrossRef]
  3. S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
    [CrossRef]
  4. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” Conf. on Opt. Fiber Commun. (OFC) OTh1G4 (2013).
  5. Y. Wang, Y. Wang, N. Chi, J. Yu, H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [CrossRef] [PubMed]
  6. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
    [CrossRef]
  7. C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, J. Y. Wen, F. C. Hu, “Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport,” Opt. Lett. 38(13), 2345–2347 (2013).
    [CrossRef] [PubMed]
  8. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [CrossRef] [PubMed]
  9. Y. C. Chi, Y. C. Li, H. Y. Wang, P. C. Peng, H. H. Lu, G. R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
    [CrossRef] [PubMed]
  10. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999), pp. 113–115.
  11. H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).
  12. J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA, J. Lightwave Technol. 30(24), 3946–3952 (2012).
    [CrossRef]

2013 (2)

2012 (4)

2010 (1)

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

2009 (1)

S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
[CrossRef]

Carpenter, J.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA, J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

Chakchai, S. I.

S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
[CrossRef]

Chang, C. H.

Chen, C. Y.

Chi, N.

Chi, Y. C.

Chow, C. W.

Henniger, H.

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Hu, F. C.

Huang, P. Y.

Jain, R.

S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
[CrossRef]

Li, Y. C.

Lin, G. R.

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Liu, Y.

Liu, Y. F.

Lu, H. H.

Peng, P. C.

Shang, H.

Tamimi, A. K.

S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
[CrossRef]

Thomsen, B. C.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA, J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

Tsang, H. K.

Wang, H. Y.

Wang, Y.

Wen, J. Y.

Wilfert, O.

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Wilkinson, T. D.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA, J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

Wu, H. W.

Wu, P. Y.

Yeh, C. H.

Yu, J.

IEEE /OSA, J. Lightwave Technol. (1)

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA, J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

S. I. Chakchai, R. Jain, A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Comm. 27(2), 156–171 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Radioengineering (1)

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Other (4)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” Conf. on Opt. Fiber Commun. (OFC) OTh1G4 (2013).

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999), pp. 113–115.

H. T. Lin, C. L. Lai, and Y. C. Huang, “Dynamic bandwidth allocation with QoS support for integrated EPON/WiMAX networks,” IEEE 14th International Conf. on High Performance Switching and Routing (HPSR) 74–79 (2013).

N. Cvijetic and T. Wang, “WiMAX over free-space optics - evaluating OFDM multi-subcarrier modulation in optical wireless channels,” IEEE Sarnoff Symposium 1–4 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental configuration of our proposed 10-Gbps optical WiMAX transport system employing VCSEL and SLM with 16-QAM-OFDM signal over a 6-m free-space link.

Fig. 2
Fig. 2

(a) The output optical power of VCSEL at different driving currents. (b). The optical spectrum of VCSEL at a driving current of 12 mA.

Fig. 3
Fig. 3

The frequency response of the VCSEL at different driving currents.

Fig. 4
Fig. 4

The configuration of employing the SLM as a dynamic convex lens.

Fig. 5
Fig. 5

(a) A block diagram of the equalizer, in which including 1st and 2nd equalized functions. (b). The circuitry of the equalizer.

Fig. 6
Fig. 6

(a) The electrical spectrum of the 10Gbps/5GHz 16-QAM-OFDM data signal before an equalizer. (b). The electrical spectrum of the 10Gbps/5GHz 16-QAM-OFDM data signal after an equalizer.

Fig. 7
Fig. 7

The measured BER curves and constellation map at a data signal of 10Gbps/5GHz.

Fig. 8
Fig. 8

The eye diagrams of 10-Gbps optical WiMAX signal under a 6-m free-space link: (a) without employing equalizer and LNA, (b) with employing equalizer and LNA.

Tables (1)

Tables Icon

Table 1 Output optical powers and RIN values of VCSEL under different driving currents

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RIN= i 2 I p 2
P r = P t G t G r R l

Metrics