Abstract

We present a generic model for studying numerically the performance of hollow-core photonic bandgap fibers (HC-PBGFs) with arbitrary cross-sectional distortions. Fully vectorial finite element simulations reveal that distortions beyond the second ring of air holes have an impact on the leakage loss and bandwidth of the fiber, but do not significantly alter its surface scattering loss which remains the dominant contribution to the overall fiber loss (providing that a sufficient number of rings of air holes (≥5) are used). We have found that while most types of distortions in the first two rings are generally detrimental, enlarging the core defect while keeping equidistant and on a circular boundary the glass nodes surrounding the core may produce losses half those compared to “idealized” fiber designs and with no penalty in terms of the transmission bandwidth.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [CrossRef]
  2. Y. Jung, V. A. J. M. Sleiffer, N. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. de Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Proceedings of the Optical Fiber Communications Conference (2013), paper PDP5A.3 (Postdeadline).
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  4. E. N. Fokoua, F. Poletti, D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [CrossRef] [PubMed]
  5. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proceedings of Optical Fiber Communication Conference (2004), paper PDP24.
  6. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14(17), 7974–7985 (2006).
    [CrossRef] [PubMed]
  7. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15(26), 17577–17586 (2007).
    [CrossRef] [PubMed]
  8. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
    [CrossRef] [PubMed]
  9. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, P. St. J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
    [CrossRef] [PubMed]
  10. K. Saitoh, M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [CrossRef] [PubMed]
  11. M.-J. Li, J. A. West, K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25(9), 2463–2468 (2007).
    [CrossRef]
  12. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, ” Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.
  13. K. Z. Aghaie, M. J. F. Digonnet, S. Fan, “Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model,” J. Lightwave Technol. 31(7), 1015–1022 (2013).
    [CrossRef]
  14. F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35(17), 2837–2839 (2010).
    [CrossRef] [PubMed]
  15. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
    [CrossRef]
  16. T. Murao, K. Saitoh, M. Koshiba, “Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides,” J. Lightwave Technol. 26(12), 1602–1612 (2008).
    [CrossRef]
  17. F. Poletti and E. Numkam Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of ECOC 2013, London (2013), paper Tu.3A.
    [CrossRef]

2013

2012

E. N. Fokoua, F. Poletti, D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

2010

2008

2007

2006

2005

2003

Aghaie, K. Z.

Amezcua-Correa, R.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

Babic, F.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Birks, T. A.

Broderick, N. G.

Broderick, N. G. R.

Couny, F.

Digonnet, M. J. F.

Fan, S.

Farr, L.

Fokoua, E. N.

Frosz, M. H.

Gèrôme, F.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Knight, J. C.

Koch, K. W.

Koshiba, M.

Leon-Saval, S. G.

Li, M.-J.

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Mangan, B. J.

Mason, M. W.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

Murao, T.

Nold, J.

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Petrovich, M. N.

Poletti, F.

Rammler, S.

Richardson, D. J.

Roberts, P. J.

Russell, P. St. J.

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

Sabert, H.

Saitoh, K.

Slavík, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

St. J. Russell, P.

Stefani, A.

Tomlinson, A.

Weiss, T.

West, J. A.

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Williams, D. P.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

IEEE Commun. Mag.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. J. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Other

F. Poletti and E. Numkam Fokoua, “Understanding the physical origin of surface modes and practical rules for their suppression,” in Proceedings of ECOC 2013, London (2013), paper Tu.3A.
[CrossRef]

Y. Jung, V. A. J. M. Sleiffer, N. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. de Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Proceedings of the Optical Fiber Communications Conference (2013), paper PDP5A.3 (Postdeadline).

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proceedings of Optical Fiber Communication Conference (2004), paper PDP24.

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, ” Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry description of a HC-PBGF: (a) SEM image of the fiber reported in [1] (b) ideal representation generated with average parameters extracted from the SEM image (c) more realistic distorted profile and (d) parameters required to build distorted fiber geometry.

Fig. 2
Fig. 2

Measured and simulated differential group delay (DGD) for a few higher order modes at 1.55μm . The DGD was measured using a time-of-flight measurement technique on a 260m long fiber sample. The data shown is the average of measured and simulated values for the individual modes of each mode group. Note that the good agreement between simulation data with a distorted profile and the measurement.

Fig. 3
Fig. 3

Impact of cladding size on HC-PBGF loss. Fiber A in blue is close to an idealized and undistorted fiber; in Fiber B and C the cladding beyond the second ring is scaled down to 95% and 90% of its original size, respectively. The dotted lines indicate leakage loss only while the solid lines show the total loss (i.e. leakage + scattering). The inset plots the total loss of the fibers on a linear scale between 0 and 10dB/km.

Fig. 4
Fig. 4

Impact of corner hole size on the loss of HC-PBGFs. Fibers 1 to 6 have incrementally larger corner holes. The dotted green line shows the loss computed for the idealized fiber shown as (a) while the dash-dot black line is the cutback measurement on the fabricated fiber.

Fig. 5
Fig. 5

Contour plots of time average power flow in the z-direction for Fiber 1 (left) and Fiber 6 (right). The contour lines are over a 30dB range and 2dB apart. Note how large gaps on the core boundary prompt the guided mode to overlap more strongly with the air-glass interfaces.

Fig. 6
Fig. 6

Impact of core wall thickness on loss and modal content for a HC-PBGF with equal node spacing on the core boundary. The curve labeled t/2 is for a fiber with no core tube, whereas those labeled t and 1.25t are for fibers with core tubes that are as thick and 1.25 times thicker than the capillaries in the starting stack. As the core wall is thickened, surface modes move within the bandgap from the short wavelength edge, indicating they are located in the struts [17].

Fig. 7
Fig. 7

Impact of core wall thickness on loss and modal content for a HC-PBGF with a six distorted and enlarged corner holes. For this distorted fiber, increasing the core wall thickness results in more severe loss and bandwidth penalties as compared to the fiber shown in Fig. 6.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= ( ε 0 μ 0 ) 1 2 holeperimeters | E | 2 ds crosssection E× H * dA

Metrics