Abstract

We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm−1 and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
    [CrossRef]
  3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [CrossRef]
  4. G. Hancock, “Applications of midinfrared quantum cascade lasers to spectroscopy,” Opt. Eng. 49(11), 111121 (2010).
    [CrossRef]
  5. R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
    [CrossRef]
  6. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
    [CrossRef]
  7. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
    [CrossRef] [PubMed]
  8. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” J. Opt. Soc. Am. B 20(8), 1761–1768 (2003).
    [CrossRef]
  9. C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
    [CrossRef]
  10. T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy : dynamics from ten seconds to ten nanoseconds,” Appl. Spectrosc. 47(9), 1376–1381 (1993).
    [CrossRef]
  11. W. Uhmann, A. Becker, C. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45(3), 390–397 (1991).
    [CrossRef]
  12. J.-M. Melkonian, J. Petit, M. Raybaut, A. Godard, and M. Lefebvre, “Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser,” in Conference on Lasers and Electro-Optics 2012 (OSA, 2012), paper CF2K.4.
  13. B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
    [CrossRef]
  14. M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012).
    [CrossRef]
  15. Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
    [CrossRef]
  16. E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
    [CrossRef]
  17. E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
    [CrossRef]
  18. H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
    [CrossRef]
  19. N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999).
    [CrossRef]
  20. J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett. 21(5), 179–180 (1985).
    [CrossRef]
  21. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011).
    [CrossRef]
  22. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
    [CrossRef]

2012 (1)

M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012).
[CrossRef]

2011 (2)

H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011).
[CrossRef]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

2010 (4)

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

G. Hancock, “Applications of midinfrared quantum cascade lasers to spectroscopy,” Opt. Eng. 49(11), 111121 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

2009 (1)

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

2008 (1)

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

2006 (1)

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

2004 (1)

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

2003 (1)

2001 (1)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

1999 (1)

N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999).
[CrossRef]

1998 (1)

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

1985 (1)

J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett. 21(5), 179–180 (1985).
[CrossRef]

1972 (1)

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Anders, S.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

Baillargeon, J. N.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Becker, A.

Brandstetter, M.

M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012).
[CrossRef]

Bronner, W.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Buus, J.

J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett. 21(5), 179–180 (1985).
[CrossRef]

Cai, S.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chen, J.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

Cheng, L.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Cho, A. Y.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Choa, F. S.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Detz, H.

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

Duxbury, G.

Faist, J.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Finger, N.

N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999).
[CrossRef]

Fuchs, F.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Gmachl, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Gornik, E.

N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999).
[CrossRef]

Hancock, G.

G. Hancock, “Applications of midinfrared quantum cascade lasers to spectroscopy,” Opt. Eng. 49(11), 111121 (2010).
[CrossRef]

Harris, G. W.

Herndon, S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Hinkov, B.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Hoffman, A. J.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Hoffmann, L. K.

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

Howard, S. S.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hwang, W.-Y.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Ishaug, B.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Johnson, T. J.

Kogelnik, H.

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Köhler, K.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Kosterev, A.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Langford, N.

Le, H. Q.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Lee, H. K.

H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011).
[CrossRef]

Lendl, B.

M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Lin, C.-H.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Liu, Z.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Masselink, W. T.

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

McCulloch, M. T.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

McManus, J. B.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Mujagic, E.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

Namjou, K.

Nelson, D. D.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Newnham, D. A.

Nobile, M.

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

Normand, E. L.

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Peng, C.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Pflügl, C.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Schartner, S.

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

Schrenk, W.

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

Schwarzer, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Semtsiv, M. P.

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

Shank, C. V.

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Shorter, J. H.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Siebert, F.

Simon, A.

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Strasser, G.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

Tanbun-Ek, T.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Taran, C.

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Uhmann, W.

Um, J.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

Wagner, J.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Wang, X.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Wasserman, D.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Wehr, R.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Weil, J. M.

Whittaker, E. A.

Wienold, M.

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

Wood, E.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Yang, Q.

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Yao, Y.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Yu, J. S.

H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011).
[CrossRef]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Appl. Phys. B (1)

H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008).
[CrossRef]

E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[CrossRef]

Electron. Lett. (1)

J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett. 21(5), 179–180 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

G. Hancock, “Applications of midinfrared quantum cascade lasers to spectroscopy,” Opt. Eng. 49(11), 111121 (2010).
[CrossRef]

Opt. Lett. (1)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004).
[CrossRef]

Sens. Actuators B Chem. (1)

M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012).
[CrossRef]

Other (1)

J.-M. Melkonian, J. Petit, M. Raybaut, A. Godard, and M. Lefebvre, “Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser,” in Conference on Lasers and Electro-Optics 2012 (OSA, 2012), paper CF2K.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conventional non-time-resolved FT-IR measurement (white, solid line) of a short (0.9 mm) ridge-type QCL with an overlay of the corresponding step-scan measurement as contour plot. In addition to spectral and intensity domain data, time-resolved information is now provided. The laser repetition rate was 50 kHz and the driving current was 750 mA (8.33 kA/cm2). Left axis shows time-domain data (pulses triggered at t = 200 ns) and right axis as well as color scale show normalized intensity data.

Fig. 2
Fig. 2

Emission characteristics under different operation conditions (laser current densities J) for short DFB-QCLs (top), long DFB-QCLs (middle) and RCSE-QCLs (top). The laser repetition rate was 10 kHz and the pulse duration adjusted on the laser driver was 2 µs (pulses triggered at t = 250 ns). Δ-values represent the achieved spectral coverage for each device.

Fig. 3
Fig. 3

Experimentally determined tuning rates of the employed laser material as a function of applied laser current densities (black squares, data obtained from a RCSE device). A polynomial fit of tuning rates and the corresponding coefficient of determination (R2) is included for illustration. Tuning rates for different device geometries and current densities as extracted from data shown in Fig. 2 are indicated in the graph (colored circles).

Fig. 4
Fig. 4

(left) Results of time-resolved step-scan measurements of a selected RCSE-QCL at ten different laser currents (pulses triggered at t = 250 ns); (right) For clarity, spectral tuning curves were extracted with a peak search function and fitted with functions of the form A(I) e t B(I) c . At injection currents between 400 mA and 700 mA, the lasing time is basically limited by the pulse length that is 2 µs. At the other currents, the device stops lasing because the increasing losses exceed the heat-induced decreasing gain.

Fig. 5
Fig. 5

Emission of three selected RCSE-QCLs that were part of an array of RCSE-QCLs (see inset) leading to a cumulative emission range of 22.5 cm−1 (pulses triggered at t = 500 ns).

Tables (1)

Tables Icon

Table 1 Investigated QCL configurations of the same laser material. The waveguide width was the same for all devices (10 µm).

Metrics