Abstract

We demonstrate, for the first time, OCT imaging capabilities of a novel, akinetic (without any form of movement in the tuning mechanism), all-semiconductor, all-electronic tunable, compact and flexible swept source laser technology at 1550 nm and 1310 nm. To investigate its OCT performance, 2D and 3D ex vivo and in vivo OCT imaging was performed at different sweep rates, from 20 kHz up to 200 kHz, with different axial resolutions, about 10 µm to 20 µm, and at different coherence gate displacements, from zero delay to >17 cm. Laser source phase linearity and phase repeatability standard deviation of <2 mrad (<160 pm) were observed without external phase referencing, indicating that the laser operated close to the shot noise limit (~2 × factor); constant percentile wavelengths variations of sliding RIN and ortho RIN <0.2% could be demonstrated, ~5 times better as compared to other swept laser technologies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical coherence tomography: technology and applications – Vol. 1, W. Drexler and J. G. Fujimoto eds. (Springer 2008).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  4. High speed 1310nm swept source for OCT,” datasheet #2010–0230, Axsun Technologies Inc. (2009); http://www.axsun.com/PDF/OCT-SS1310-datasheet-update-7-12-13.pdf .
  5. High speed scanning lasers,” datasheet, Santec Corp. (2013); http://www.santec.com/en/products/oct/lightsource-for-octsystem?gclid=CMCZkrLwlboCFQZZ3godk3UAUA .
  6. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” CLEO 1–2 (2011).
  7. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
    [CrossRef]
  8. M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
    [CrossRef]
  9. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
    [CrossRef]
  10. B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [CrossRef]
  11. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” PDPB2, CLEO 2011.
  12. “Inner vision: optical coherence tomography,” 2010 Vol. 1.1, p.8, Santec Corp.
  13. “Wide bandwidth 100kHz 1310nm swept source OCT,” datasheet #2013–0103, Axsun Technologies Inc. (2013).
  14. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  15. R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
    [CrossRef]
  16. A. Yariv, “Optical electronics in modern communication,” (Oxford University, 1997).
  17. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [CrossRef] [PubMed]
  18. M. A. Choma, K. Hsu, J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [CrossRef] [PubMed]
  19. J. Xi, L. Huo, J. Li, X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18, 9511 (2010).
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652 (2005).
  21. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]

2012

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

2011

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

2010

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

J. Xi, L. Huo, J. Li, X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18, 9511 (2010).

2009

2006

2005

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990

B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Akiba, M.

Baranov, S.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Biedermann, B. R.

Boschert, P.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

Bouma, B. E.

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

Cense, B.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chiccone, C.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

Choma, M. A.

M. A. Choma, K. Hsu, J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Chong, C.

Crawford, M.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

de Boer, J.

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Derickson, D.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

Eigenwillig, C. M.

Ensher, J.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

Featherston, K.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

Feldman, M. D.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, J.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

Huber, R.

Huo, L.

Itoh, M.

Izatt, J. A.

M. A. Choma, K. Hsu, J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

Kemp, N.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Klein, T.

Kuranov, R. V.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Li, J.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

McElroy, A. B.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Milner, T. E.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Minneman, M. P.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

Morosawa, A.

Mujat, M.

Park, B.

Pierce, M. C.

Potsaid, B.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sakai, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taber, J.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

Taira, K.

Tearney, G. J.

Wieser, W.

Wojtkowski, M.

Xi, J.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

IEEE J. Quantum Electron.

B. R. Bennett, R. A. Soref, J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010).
[CrossRef]

J. Biomed. Opt.

M. A. Choma, K. Hsu, J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Opt. Express

Proc. SPIE

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE 8311, 831116 (2011).
[CrossRef]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. P. Minneman, C. Chiccone, D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE 8213, 82130T (2012).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

A. Yariv, “Optical electronics in modern communication,” (Oxford University, 1997).

High speed 1310nm swept source for OCT,” datasheet #2010–0230, Axsun Technologies Inc. (2009); http://www.axsun.com/PDF/OCT-SS1310-datasheet-update-7-12-13.pdf .

High speed scanning lasers,” datasheet, Santec Corp. (2013); http://www.santec.com/en/products/oct/lightsource-for-octsystem?gclid=CMCZkrLwlboCFQZZ3godk3UAUA .

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” CLEO 1–2 (2011).

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” PDPB2, CLEO 2011.

“Inner vision: optical coherence tomography,” 2010 Vol. 1.1, p.8, Santec Corp.

“Wide bandwidth 100kHz 1310nm swept source OCT,” datasheet #2013–0103, Axsun Technologies Inc. (2013).

Optical coherence tomography: technology and applications – Vol. 1, W. Drexler and J. G. Fujimoto eds. (Springer 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic representation of Insight laser cavity.

Fig. 2
Fig. 2

Graphic representation of the duty cycle and sweep efficiency for (a) mechanically-tuned swept laser; (b) VT-DBR akinetic all semiconductor laser. The black curves represent the laser generated optical frequency (or associated wavelength) at each instant (reading). The sweep repetition time interval and related sub-intervals definitions are color-coded and overlapped to the frequency curves. Typically, for (a), the sweep time and the “valid points” time intervals coincide (100% sweep efficiency). (c) illustrates the time sub-intervals distribution along one sweep for the akinetic laser source, highlighting the distribution of valid (green background) and invalid (orange background) time slots.

Fig. 3
Fig. 3

Schematic representation of the imaging setup as used in the experiments. laser – Insight laser source; cr1, cr2 – circulator; 50/50 – fiber-based single mode optical coupler, 50/50 splitting ratio; p – polarization controller; c – collimator; R – retroreflector; M – mirror; xy scan – 2-axis galvo scan unit; L – imaging lens; PD – dual-balanced photodetector; DAQ – digitizer; PC – personal computer. See text for details.

Fig. 4
Fig. 4

Normalized output power spectrum (flat shape) of Insight 1550 nm 40 nm sweep range, 5.5 mW output power swept laser source. The inset shows a magnification of a portion of the power spectrum (valid and invalid points).

Fig. 5
Fig. 5

PSF roll-off curves of Insight 1550 nm 40 nm sweep range laser source recorded at (a) 20 kHz, (b) 100 kHz and (c) 200 kHz sweep rate. Plots (a), (b) and (c) show the PSF decay in the 0-180 mm, 0-40 mm and 0-20 mm depth range respectively, which represent the whole depth range allowed by the mechanical limitations of the reference arm for (a) and the associated selected sweep rates for all. The PSF peak values drop-off and the appearance of associated side lobes (some pointed by the black arrows as indications) were likely related to Nyquist limitations.

Fig. 6
Fig. 6

Schematic representation of the algorithms applied to evaluate the laser (auto-correlation) and system (cross-correlation) phase stability. Si represents the i-th spectrum of the ensemble (raw data); ℱ{} the FFT operator; |•| the module operator; ∠ the phase operator; ℱ−1{} the inverse FFT; F ^ indicates the filtered PSF; φ the unwrapped phase; φD the phase difference of consecutive spectrums; φ ¯ the mean phase of the ensemble; φ ¯ fit the linear fit of the mean phase; σ(•) the standard deviation computation. See text for details.

Fig. 7
Fig. 7

Estimation of phase stability for the Insight 1550 nm, 40 nm sweep range laser source at 20 kHz (blue curves), 100 kHz (red curves) and 200 kHz (black curves) sweep rates. a) φ ¯ = φmean mean phase, unwrapped; b) difference between mean unwrapped phase and associated linear fit curve φ ¯ fit = φfit; c) evaluation of sweep linearity: standard deviation of the differences between single sweep phases, φi, and φ ¯ fit ; and d) evaluation of sweep repeatability: standard deviation of the differences between single sweep phases φi, and φ ¯ .

Fig. 8
Fig. 8

Direct FFT computation of acquired spectra (raw data) for (a) auto-correlation and (b) cross-correlation data sets. The peaks in (b) relate, from left to right, to the front and back surface of the cover glass respectively. Data acquired with Insight 1550 nm, 40 nm sweep range at 200 kHz sweep rate.

Fig. 9
Fig. 9

Normalized RF PSD of Insight 1550 nm, 40 nm sweep range. (a-c) ASE with no active sweep; (d-f) PSD at 20 kHz sweep rate; (g) PSD at 100 kHz sweep rate; (h) PSD at 200 kHz sweep rate. Red traces in d-f indicate previously published data for a FDML swept laser source (ref [17].). The computed detector’s shot noise limit (~110 µW incident power) was −145.8 dBc/Hz.

Fig. 10
Fig. 10

Estimation of percentile variations of (a) sliding RIN and (b) ortho RIN of Insight 1550 nm, 40 nm sweep range laser source.

Fig. 11
Fig. 11

Effect of the decimation process on acquired (digitized) raw data to remove the invalid points. The inset in (a) represents the scales of the horizontal and vertical axes for each plot in the figure. Plots (a-f) show recorded power vs. sample traces before (left column) and after (right column) the removal of the invalid points. The insets in (c) show magnified portions of the trace. The red arrows in the 40 points (pts.) inset (leftmost) indicatively show the beginning (left arrow) and the end (right arrow) of the transition interval between two valid points subsets. The blue arrow in the 5000 points inset (rightmost) in (c) and its analogous in the 5000 points inset in (d) for the equivalent magnified portion of the traces, illustrate the effect of an incorrect reconstruction of the data set with invalid points removed. The 200 points insets in (g) and (h) illustrate the effect of the removal of invalid points on interferometric fringes signal.

Fig. 12
Fig. 12

OCT imaging using the Insight 1550 nm, 40 nm sweeping range laser source, at different sweep rates and different displacements of the coherence gate. The tomograms show cross-sectional reconstruction of an ex vivo tooth. Data were acquired always on the same location on the sample for all the shown data sets. Each figure was averaged from 32 consecutives B-scans. Image size is 6 × 2.9 mm2 (width × depth, in tissue), corresponding to 1024 × 100 pixels (hor. × vert.) for the 20 kHz images (topmost row) and 2048 × 100 pixels for the remaining images. Per each selected laser sweep rate, imaging range spans from zero delay (z.d.) up to the largest coherence gate displacement allowed by the system. Incident power on the sample ~2 mW. Refractive index n = 1.44.

Fig. 13
Fig. 13

Single vs. averaged in vivo skin imaging at 1550 nm, 40 nm sweep range. a-c) single frame; d-f) averaged frame from 32 consecutive B-scans (M-series). Image size is 6 × 2.9 mm2 (width × depth, in tissue, n = 1.44), corresponding to 1024 × 100 pixels (hor. × vert.) for a and d (i.e. 20 kHz sweep) and 2048 × 100 pixels for the others. Coherence gate location close to zero delay. Scale bar = 1 mm. Incident power on sample ~2 mW.

Fig. 14
Fig. 14

In vivo skin imaging at 1550 nm, 40 nm SR with ~20 µm isotropic resolution. a) 3D sample reconstruction; b) internal view of the structure; c) cross-sectional view; overlapped rectangle correspond to overlapped rectangle (vertical plane, blue) in b; d) en-face view; overlapped rectangle corresponds to overlapped rectangle (horizontal plane, green) in b. Volume size is 5 × 5 × 2 mm3 (width × height × depth, in tissue, n = 1.44), corresponding to 1024 × 256 × 180 pixels. Scale bars correspond to 0.50 mm. Incident power on sample ~2 mW.

Fig. 15
Fig. 15

Extended sweep range of the 1550 nm laser improves OCT axial resolution (Δz, in tissue) imaging. a), b) cross-sectional tomographies (average from 32 B-scans) of ex vivo tooth; images size is 7 × 2.9 mm2 (width × depth, in tissue, n = 1.44), corresponding to 2048 × 100 pixels and 2048 × 300 pixels (hor. × vert.) respectively. c), d) 1.5 × magnification of the rectangle areas in 12a and 12b respectively. Coherence gate close to zero delay. Scale bar = 1 mm. Incident power on sample ~2 mW.

Fig. 16
Fig. 16

OCT imaging using the Insight 1310 nm, 30 nm sweep range laser source. a), b) single frame and 32 frames average of ex vivo tooth; image size is 6 × 2.9 mm2 (width × depth, in tissue). c) en face projection of ex vivo tooth 3D data set; image size is 6 × 8 mm2 (width × height). d), e) single frame and 32 frames average of in vivo skin; image size is 6 × 2.9 mm2 (width × depth, in tissue). f) en face projection of in vivo skin 3D data set; image size is 6 × 6 mm2 (width × height). Incident power on sample was 0.5 mW. Refractive index n = 1.44.

Fig. 17
Fig. 17

OCT imaging using the Insight 1310 nm, 30 nm sweep range source. a) 3D reconstruction of ex vivo tooth; vol. size is 6 × 8 × 3 mm3 (width × height × depth, in tissue); b) internal view of the structure; c) cross-sectional tomography extracted from 3D data set (blue rectangle in b); d) en-face view extracted from 3D data set (green rectangle in b). Incident power on sample was 0.5 mW. Coherence gate close to zero delay. Refractive index n = 1.44. Scale bar = 1 mm.

Tables (2)

Tables Icon

Table 1 Main specifications of Insight swept laser sources as used in the experiments. λ0 – spectrum central wavelength; Δλ – sweeping range; Pout – laser output power; Δz – system axial resolution (depth), in air.

Tables Icon

Table 2 Estimation of phase (σφ), phase differences of consecutive spectrums (σΔφ) and phase under shot noise conditions (σsn, model) of power spectrum FFTs of auto-correlation (left side) and cross-correlation (right side) data sets using the Insight 1550 nm, 40 nm sweep range laser source. FFT phases are evaluated at cover glass front surface (PSF front peak position). The cover glass is 1 mm thick.

Metrics