Abstract

The use of computer generated holograms together with spatial light modulator (SLM) enable highly parallel laser micromachining. Usually SLM is used for splitting the original laser beam to desired number of beams with equal intensity. However, this technique also enables that the intensity of every beam can be controlled individually. Example of the hologram designing procedure for separation of the original beam to 400 beams with individually controlled intensity is presented. The proposed technique is demonstrated by femtosecond laser ablation of grayscale pictures so that grey scale of the pixel is addressed with corresponding beam intensity in the ablated picture.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  2. S. Hasegawa, Y. Hayasaki, N. Nishida, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [Crossref] [PubMed]
  3. S. Hasegawa and Y. Hayasaki, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator,” Opt. Rev. 14(4), 208–213 (2007).
    [Crossref]
  4. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).
  5. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
    [Crossref]
  6. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
    [Crossref]
  7. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
    [Crossref] [PubMed]
  8. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [Crossref] [PubMed]
  9. M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).
  10. E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
    [Crossref] [PubMed]
  11. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  12. J. R. Fienup, “Phase retrieval algorithms: A comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  13. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
    [Crossref] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
    [Crossref] [PubMed]
  16. A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
    [Crossref]
  17. J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]

2013 (2)

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (2)

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

2008 (2)

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

2007 (1)

S. Hasegawa and Y. Hayasaki, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator,” Opt. Rev. 14(4), 208–213 (2007).
[Crossref]

2006 (1)

2005 (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

2003 (1)

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

1988 (1)

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).

1982 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Baudach, S.

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Beck, R. J.

Bonse, J.

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Booth, M. J.

Borowiec, A.

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

Bryngdahl, O.

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).

Dearden, G.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Edwardson, S. P.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Fearon, E.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Fienup, J. R.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Gruger, J.

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Hand, D. P.

Hasegawa, S.

Haugen, H. K.

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator,” Opt. Rev. 14(4), 208–213 (2007).
[Crossref]

S. Hasegawa, Y. Hayasaki, N. Nishida, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Jesacher, A.

Kaakkunen, J.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

Kautek, W.

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Kuang, Z.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Lenzner, M.

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Liu, D.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

MacKensey, M.

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

MacPherson, W. N.

Nishida, N.

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Paivasaari, K.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

Parry, J. P.

Perrie, W.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Shephard, J. D.

Silvennoinen, M.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Vahimaa, P.

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

von Freymann, G.

Waddie, A.

Waller, E. H.

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Watkins, K. G.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Weatherly, G. C.

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

Weston, N. J.

Wyrowski, F.

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

A. Borowiec, M. MacKensey, G. C. Weatherly, and H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003).
[Crossref]

J. Bonse, S. Baudach, J. Gruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Appl. Surf. Sci. (2)

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).

Opt. Express (3)

Opt. Lett. (3)

Opt. Rev. (1)

S. Hasegawa and Y. Hayasaki, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator,” Opt. Rev. 14(4), 208–213 (2007).
[Crossref]

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Phys. Proc. (1)

M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the femtosecond laser ablation setup with SLM.

Fig. 2
Fig. 2

IFTA method used in this work. In this method camera feedback loop is used to improve the hologram.

Fig. 3
Fig. 3

A set of example images. Computer generated hologram (a) producing intensity pattern shown in (b) which is measured with cam1. Microscope image of ablated structures with period of 32 μm on silicon wafer (c).

Fig. 4
Fig. 4

Diameter of the ablated hole as a function of fluence.

Fig. 5
Fig. 5

A portrait of the Dr. Kaakkunen. (a) is original photo. (b)-(d) are microscope images with different magnification of ablated patterns in silicon. Period of the hole matrix is 9 μm.

Fig. 6
Fig. 6

A portrait of the former president of Finland. (a) Photograph of measured intensity patterns generated using 150 holograms stitched into an image. (b) Photograph of the ablated image on silicon wafer. Original picture was taken by Jussi Aalto.

Fig. 7
Fig. 7

Close-up microscope images of the ablated structures. The diameter of the ablated holes varied from 1 to 15 μm. Period of the hole matrix is 32 μm.

Metrics