Abstract

The Faraday isolator based on a new magneto-optical medium – TAG (terbium aluminum garnet) ceramics was implemented and investigated experimentally. The magneto-optical element was temperature-stabilized using water cooling. The device provides a stable isolation ratio of 38 dB at 300 W laser power. Estimates show high performance of the device at a kilowatt laser power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
    [CrossRef]
  2. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [CrossRef]
  3. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [CrossRef] [PubMed]
  4. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).
  5. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
    [CrossRef]
  6. R. Yasuhara, H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [CrossRef] [PubMed]
  7. S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
    [CrossRef]
  8. M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
    [CrossRef]
  9. H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
    [CrossRef]
  10. V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
    [CrossRef]
  11. W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
    [CrossRef]
  12. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
    [CrossRef]
  13. V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
    [CrossRef]
  14. M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
    [CrossRef]
  15. H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [CrossRef]
  16. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
    [CrossRef]
  17. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, T. Yanagitani, “TGG ceramics Faraday rotator for high power laser application,” Opt. Lett. 39(5), 1–4(2014).
  18. M. A. Kagan, E. A. Khazanov, “Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [CrossRef] [PubMed]
  19. A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012).
    [CrossRef]
  20. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000).
    [CrossRef]
  21. E. A. Khazanov, “Faraday Isolators for high average power lasers Advances” in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, Croatia, 2010).
  22. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
    [CrossRef]
  23. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [CrossRef]

2014 (1)

2013 (2)

R. Yasuhara, H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[CrossRef] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

2012 (1)

2011 (2)

H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

2007 (3)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
[CrossRef]

2005 (1)

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

2004 (4)

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

M. A. Kagan, E. A. Khazanov, “Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

2003 (1)

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[CrossRef]

2002 (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

2000 (4)

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

1999 (2)

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Chani, V. I.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

Chen, J.

W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
[CrossRef]

Chiku, S.

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

Fujii, T.

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[CrossRef]

Fujimoto, Y.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Fukuda, T.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

Furuse, H.

Ganschow, S.

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

Geho, M.

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[CrossRef]

Guo, F.

W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
[CrossRef]

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Kagamitani, Y.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

Kagan, M. A.

Kaminskii, A. A.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Kan, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Kawanaka, J.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

Kawashima, T.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Khazanov, E.

Khazanov, E. A.

A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

M. A. Kagan, E. A. Khazanov, “Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

Klimm, D.

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

Lin, H.

H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Lu, J.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Machida, H.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

Mal'shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Mironov, E. A.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Nakatsuka, M.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Nozawa, H.

Palashov, O.

Palashov, O. V.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Pawlak, D. A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Reiche, P.

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Sato, H.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

Sekijima, T.

M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[CrossRef]

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Snetkov, I.

Snetkov, I. L.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

Starobor, A.

Starobor, A. V.

Takagi, T.

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Teng, H.

H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Tokita, S.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Uecker, R.

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

Ueda, K.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Voitovich, A. V.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

Vyatkin, A. G.

Xu, J.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yagi, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yanagitani, T.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, T. Yanagitani, “TGG ceramics Faraday rotator for high power laser application,” Opt. Lett. 39(5), 1–4(2014).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yasuhara, R.

Yoshida, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

Yoshikawa, A.

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Zhang, W.

W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
[CrossRef]

Zheleznov, D.

Zheleznov, D. S.

Zhou, S. M.

H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Cryst. Res. Technol. (1)

S. Ganschow, D. Klimm, P. Reiche, R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34(5-6), 615–619 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

J. Cryst. Growth (4)

H. Sato, V. I. Chani, A. Yoshikawa, Y. Kagamitani, H. Machida, T. Fukuda, “Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications,” J. Cryst. Growth 264(1-3), 253–259 (2004).
[CrossRef]

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals,” J. Cryst. Growth 212(3-4), 469–475 (2000).
[CrossRef]

W. Zhang, F. Guo, J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306(1), 195–199 (2007).
[CrossRef]

M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267(1-2), 188–193 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44(7A), 4967–4970 (2005).
[CrossRef]

Mater. Res. Bull. (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[CrossRef]

Mater. Sci. Eng. B (1)

V. I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, “(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique,” Mater. Sci. Eng. B 75(1), 53–60 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

H. Lin, S. M. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Proc. SPIE (1)

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003).
[CrossRef]

Quantum Electron. (3)

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000).
[CrossRef]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

Rev. Laser Eng. (1)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Measurement of magnet-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Rev. Laser Eng. 35, 806–810 (2007).

Other (1)

E. A. Khazanov, “Faraday Isolators for high average power lasers Advances” in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, Croatia, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-section of Faraday isolator based on optical TAG ceramics. 1 – MOE, 2 – thermally stabilized copper holder, 3 – Nd-Fe-B ferromagnetic alloy magnet system, 4 – calcite wedge, 5 – half-wave plate.

Fig. 2
Fig. 2

Schemes for experimental measurements: a) thermally induced depolarization, b) thermal lens, 1 – Yb-doped fiber laser, 2 – telescope, 3 – calcite wedge, 4 – MOE, 5 – magnetic system, 6 – quartz wedges, 7 – absorber, 8 – Glan prism, 9 – measuring lens, 10 – CCD camera.

Fig. 3
Fig. 3

Depolarization versus radiation power in Faraday isolator based on TAG ceramics (circles) and TGG ceramics (squares) described in [16] and theoretical dependences (lines).

Fig. 4
Fig. 4

Experimental (dots) and theoretical (line) thermal lens power in the TAG-based FI versus laser power.

Fig. 5
Fig. 5

Time dependence of the angle of rotation of polarization plane at 300 W radiation power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ = P d / P 0
I=10lgγ.
γ= A π 2 ( 2+3ξ 5 ) 2 p 2 ,
p= a 0 QL P l λκ ,

Metrics