Abstract

Using a Sagnac fiber loop functions as a deterministic splitter of photon pairs produced by the frequency degenerate four wave mixing, we show that the background noise of the degenerate photon pairs is contributed by both Raman scattering and frequency non-degenerate four wave mixing. To improve the purity of photon pairs in the high gain regime, in addition to suppressing the noise photons by cooling the nonlinear fiber and by optimizing the detuning between the frequencies of the pump and photon pairs, the walk-off effect of the two pulsed pump fields should be mitigated by managing the dispersion of the fiber. Our investigation is not only the first step towards the generation of multi-mode squeezed vacuum in fiber optical parametric amplifiers pumped with pulsed lights, but also contributes to improving the purity of the fiber sources of degenerate photon pairs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
    [CrossRef]
  2. O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
    [CrossRef] [PubMed]
  3. W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
    [CrossRef]
  4. R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
    [CrossRef] [PubMed]
  5. J. Wenger, R. Tualle-Brouri, P. Grangier, “Pulsed homodyne measurement of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267–1269 (2004).
    [CrossRef] [PubMed]
  6. B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
    [CrossRef] [PubMed]
  7. L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
    [CrossRef] [PubMed]
  8. M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
    [CrossRef]
  9. J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
    [CrossRef]
  10. X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [CrossRef] [PubMed]
  11. H. Takesue, K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
    [CrossRef] [PubMed]
  12. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef] [PubMed]
  13. X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
    [CrossRef]
  14. J. Fan, A. Dogariu, L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
    [CrossRef] [PubMed]
  15. J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
    [CrossRef]
  16. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
    [CrossRef] [PubMed]
  17. N. Zhao, L. Yang, X. Li, “Passive optical switching of photon pairs using a spontaneous parametric fiber loop,” Opt. Lett. 37, 1220–1222 (2012).
    [CrossRef] [PubMed]
  18. Equations (2) and (3) can be derived by utilizing the method used in Ref. [19] and using the Hamiltonian of the DFWM HI=αχ(3)∫dV(Ep1+Ep2+E^si−E^si−+H.c.), where α is the constant determined by experimental details. In the expression of Hamiltonian HI, Epj+∝e−iγPpjz∫dωpje−(ωpj−ωp0j)2/2σpj2eikpjz−iωpjt(j= 1, 2) denotes the strong pump pulse, where Ppj, ωp0j and σp0j are the peak power, central frequency and bandwidth of the pump field Epj+, respectively; E^si−=∫dωsih¯ωsi2ε0VQa^+(ωsi)n(ωsi)e−i(ksiz−ωsit)represents the quantized electromagnetic signal (idler) field expanded in multi-mode, where ε0, VQ and n(ωsi) are the vacuum permittivity, the quantization volume and the refractive index of the fiber, respectively, and â+(ωsi) is the creation operator of the field at frequency ωsi.
  19. L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
    [CrossRef]
  20. X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
    [CrossRef]
  21. B. Yurke, M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
    [CrossRef] [PubMed]
  22. X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
    [CrossRef]
  23. X. Li, P. Voss, J. Chen, K. Lee, P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
    [CrossRef] [PubMed]
  24. C. J. McKinstrie, J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012).
    [CrossRef]

2012 (4)

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

C. J. McKinstrie, J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012).
[CrossRef]

N. Zhao, L. Yang, X. Li, “Passive optical switching of photon pairs using a spontaneous parametric fiber loop,” Opt. Lett. 37, 1220–1222 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

2009 (2)

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

2008 (2)

B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[CrossRef] [PubMed]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[CrossRef]

2006 (1)

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

2005 (4)

2004 (2)

2002 (2)

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

1987 (2)

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

B. Yurke, M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[CrossRef] [PubMed]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Araujo, R. M.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Banaszek, K.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Chalopin, B.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[CrossRef]

X. Li, P. Voss, J. Chen, K. Lee, P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

Cui, L.

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Dogariu, A.

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Duligall, J.

Fabre, C.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[CrossRef] [PubMed]

Fan, J.

Feng, J.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
[CrossRef]

Fulconis, J.

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Gordon, J. P.

C. J. McKinstrie, J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012).
[CrossRef]

Grangier, P.

Guo, X.

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

Hadfield, R. H.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Hall, J. L.

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

Inoue, K.

Jian, P.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[CrossRef]

X. Li, P. Voss, J. Chen, K. Lee, P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Lamine, B.

B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[CrossRef] [PubMed]

LaPorta, A.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

Lee, K.

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[CrossRef]

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Li, X.

N. Zhao, L. Yang, X. Li, “Passive optical switching of photon pairs using a spontaneous parametric fiber loop,” Opt. Lett. 37, 1220–1222 (2012).
[CrossRef] [PubMed]

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

X. Li, P. Voss, J. Chen, K. Lee, P. Kumar, “Measurement of co- and cross-polarized raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

Liu, N.

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

Lvovsky, A. I.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

Ma, X.

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

McKinstrie, C. J.

C. J. McKinstrie, J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012).
[CrossRef]

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Nam, S. W.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

Ou, Z. Y.

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Pinel, O.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Potasek, M.

B. Yurke, M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[CrossRef] [PubMed]

Potasek, M. J.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

Radzewicz, C.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

Rarity, J.

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Russell, P.

Sharping, J.

Sharping, J. E.

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Slusher, R. E.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

Takesue, H.

Treps, N.

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[CrossRef] [PubMed]

Tualle-Brouri, R.

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Wadsworth, W.

Wang, L. J.

Wasilewski, W.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

Wenger, J.

Windeler, R. S.

Wu, H.

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

Yang, L.

N. Zhao, L. Yang, X. Li, “Passive optical switching of photon pairs using a spontaneous parametric fiber loop,” Opt. Lett. 37, 1220–1222 (2012).
[CrossRef] [PubMed]

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Yu, D.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

Yurke, B.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

B. Yurke, M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[CrossRef] [PubMed]

Zhao, N.

Appl. Phys. Lett. (1)

X. Guo, X. Li, N. Liu, L. Yang, Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. McKinstrie, J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron. 18, 958–969 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, “All-fiber photon-pair source for quantum communications,” Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Phys. Rev. A (6)

L. Yang, X. Ma, X. Guo, L. Cui, X. Li, “Characterization of a fiber-based source of heralded single photons,” Phys. Rev. A 83, 053843 (2011).
[CrossRef]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu, “All fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[CrossRef]

B. Yurke, M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[CrossRef] [PubMed]

X. Ma, X. Li, L. Cui, X. Guo, L. Yang, “Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing,” Phys. Rev. A 84, 023829 (2011).
[CrossRef]

J. Chen, K. F. Lee, P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[CrossRef]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multimode modes,” Phys. Rev. A 73, 063819 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[CrossRef] [PubMed]

B. Lamine, C. Fabre, N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[CrossRef] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, “Generation of squeezed state by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[CrossRef] [PubMed]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[CrossRef] [PubMed]

O. Pinel, P. Jian, R. M. Araujo, J. Feng, B. Chalopin, C. Fabre, N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, G. Leuchs, “Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[CrossRef]

Other (1)

Equations (2) and (3) can be derived by utilizing the method used in Ref. [19] and using the Hamiltonian of the DFWM HI=αχ(3)∫dV(Ep1+Ep2+E^si−E^si−+H.c.), where α is the constant determined by experimental details. In the expression of Hamiltonian HI, Epj+∝e−iγPpjz∫dωpje−(ωpj−ωp0j)2/2σpj2eikpjz−iωpjt(j= 1, 2) denotes the strong pump pulse, where Ppj, ωp0j and σp0j are the peak power, central frequency and bandwidth of the pump field Epj+, respectively; E^si−=∫dωsih¯ωsi2ε0VQa^+(ωsi)n(ωsi)e−i(ksiz−ωsit)represents the quantized electromagnetic signal (idler) field expanded in multi-mode, where ε0, VQ and n(ωsi) are the vacuum permittivity, the quantization volume and the refractive index of the fiber, respectively, and â+(ωsi) is the creation operator of the field at frequency ωsi.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. DSF, dispersion shifted fiber; SMF, single mode fiber; Cir, circulator; G, grating; FPC, fiber polarization controller; F, filters; FC, 50/50 fiber coupler; PBS, polarization beam splitter; SPD, singe photon detector. Inset, spectra of two pumps.

Fig. 2
Fig. 2

Counting rate of SPD3 versus the pump power for the case of only the individual pump field (a) Ep1 and (b) Ep2 is launched into SFL. The second-order polynomials N s = s 1 s P 1 + s 2 s P 1 2 and N a = s 1 a P 2 + s 2 a P 2 2 (solid curves) are used to fit the data in plots (a) and (b), respectively. The linear and quadratic terms of the fitting functions are represented by the dashed and dotted lines, respectively. (c) The difference, Nd, between the total counting rate of SPD3 Nt and the sum of Ns and Na versus the total power of the two pump fields P1 + P2. The solid curve is the fitting of the function Nd = s2(P1 + P2)2. The inset plots the total counting rate Nt versus the power P1 + P2. The fitting coefficients are s 1 s = 0.00318, s 2 s = 0.01348, s 1 a = 0.00127, s 2 a = 0.01383 and s2 = 0.02298.

Fig. 3
Fig. 3

The fitting coefficients of the counting rates versus the detuning Ω = c ( λ si λ p 1 ) λ si 2 and Ω = c ( λ p 2 λ si ) λ si 2 for the SFL pumped with the individual field (a) Ep1 and (b) Ep2, respectively. (c) The fitting coefficient s2 versus the detuning Ω = c ( λ p 2 λ p 1 ) 2 λ si 2. s 1 s and s 1 a are proportional to the gain of RS. s 2 s and s 2 a are proportional to the gain of NDFWM, s2 is proportional to the gain of DFWM.

Fig. 4
Fig. 4

(a) The ratio R versus the detuning Ω = c ( λ p 2 λ p 1 ) 2 λ si 2 for pump with different power levels. (b) The value of CAR versus average power of two pump fields P1 + P2 when the detuning Ω is 0.63 THz and 0.88 THz, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| ψ = cos ϕ 2 | ψ 1 + sin ϕ 2 | ψ 2 ,
C s = g ( 2 ) N D 1 N D 2 + N D 2 η 1 ξ si 1 + cos ϕ 2
C d = N D 2 N D 3 + N D 2 η 3 ξ si 1 cos ϕ 2 ,
CAR ( s ) = C s N D 1 N D 2 = g ( 2 ) + CAR ( t ) 1 + cos ϕ 2
CAR ( d ) = C d N D 2 N D 3 = 1 + CAR ( t ) 1 cos ϕ 2 .
R = N d N s + N a .
R = s 2 ( P 1 + P 2 ) 2 ( s 1 s P 1 + s 2 s P 1 2 ) + ( s 1 a P 2 + s 2 a P 2 2 ) .
R = 1 ζ R + ζ F ,

Metrics