Abstract

It is shown that photonic crystal (PhC) optical reflectors with reflectance in excess of 60% and fractional bandwidths greater than 10% can be fabricated by ion beam milling of fewer than ten periods of rectangular cross section through-holes in micron-scale tapered fibers. The optical characteristics agree well with numerical simulations when allowance is made for fabrication artefacts and we show that the radiation loss, which is partly determined by optical interference, can be suppressed by design. The freely-suspended devices are compact and robust and could form the basic building block of optical cavities and filters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
  2. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
    [CrossRef]
  3. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  5. J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [CrossRef]
  6. W. Ding, S. R. Andrews, S. A. Maier, “Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing,” Opt. Lett. 32(17), 2499–2501 (2007).
    [CrossRef] [PubMed]
  7. Y. X. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. K. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [CrossRef] [PubMed]
  8. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
    [CrossRef] [PubMed]
  9. M. Ding, M. N. Zervas, G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
    [CrossRef] [PubMed]
  10. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices - Part 1: Adiabaticity criteria,” IEE Proceedings-J 138, 343–354 (1991).
    [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983).
  12. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the flow of light, 2nd Edition, (Princeton University, 2008).
  14. Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
    [CrossRef] [PubMed]
  15. M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
    [CrossRef]
  16. W. Ding, R. J. Liu, Z. Y. Li, “Reducing radiation losses of one-dimensional photonic-crystal reflectors on a silica waveguide,” Opt. Express 20(27), 28641–28654 (2012).
    [CrossRef] [PubMed]

2012

2011

2008

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

2007

2006

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

2003

Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

1993

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

1978

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Andrews, S. R.

Archambault, J.-L.

J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Bassi, P.

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Bellanca, G.

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Brambilla, G.

Chong, H. M. H.

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Ding, M.

Ding, W.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Hakuta, K.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kawai, Y.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Le Kien, F.

Li, Z. Y.

W. Ding, R. J. Liu, Z. Y. Li, “Reducing radiation losses of one-dimensional photonic-crystal reflectors on a silica waveguide,” Opt. Express 20(27), 28641–28654 (2012).
[CrossRef] [PubMed]

Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Lin, L. L.

Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Liu, R. J.

Liu, Y. X.

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Maier, S. A.

Meng, C.

Miyazaki, H. T.

Nakajima, K.

Nayak, K. P.

Reekie, L.

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Russell, P. St. J.

J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Sugimoto, Y.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Tong, L. M.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Xiao, Y.

Yu, H. K.

Zervas, M. N.

Zhang, A. P.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Electron. Lett.

J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Nature

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Phys. World

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the flow of light, 2nd Edition, (Princeton University, 2008).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices - Part 1: Adiabaticity criteria,” IEE Proceedings-J 138, 343–354 (1991).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wave vector diagrams of three quarter-wave stacks: (a) Silicon/air, (b) silica/air, and (c) silica/germanosilicate (Δn = 0.01). Λ is the period and the scales in the three panels are different.

Fig. 2
Fig. 2

(a) Schematic of an adiabatically tapered fiber and the guided modes therein. (b) Effective modal indexes as a function of the V-value of the fiber taper. 2a is the taper diameter. Insert: electric field distributions of HE11 (left), TE01 (right upper), TM01 (right middle), and HE21 (right lower) modes. The red dashed lines in (a) and (b) depict the etched holes.

Fig. 3
Fig. 3

(a) SEM image of a structured microfiber on a Si substrate and schematic indication of the input polarizations. Note that the microfiber has been etched through leaving the visible indentations in the Si substrate. (b-d) Measured (green curve) and simulated (blue/red/black solid lines) reflectance, transmittance and loss spectra. Insert in (c): top-view of the structure used in simulations. The dashed black lines in (b-d) are the simulated results taking into account the trapezoidal shape of the etched holes.

Fig. 4
Fig. 4

Wave vector diagrams of (a) our periodic structure and (b) that in [8]. The red lines show the stop bands, the gray areas are the air light cones, and the green area is the light cone for n = 1.373. The double ended arrows in (a) and (b) indicate the polarization axes.

Fig. 5
Fig. 5

Measured fractional radiation loss at the central wavelength of the stop band versus the number of periods comprising the PhC reflector. Insert: the dominant contributions to the scattering loss at the transitions are labeled 1 to 3.

Metrics