Abstract

A monolithic fiber chirped pulse amplification system that generates sub-500 fs pulses with 913 µJ pulse energy and 4.4 W average power at 1.55 µm wavelength has recently been demonstrated. The estimated peak power for the system output approached 1.9 GW. The pulses were near diffraction-limited and near transform-limited, benefiting from the straight and short length of the booster amplifier as well as adaptive phase shaping for the overall mitigation of the nonlinear phase accumulation. The booster amplifier employs an Er3+-doped large mode area high efficiency media fiber just 28 cm in length with a fundamental mode (LP01) diameter of 54 µm and a corresponding effective mode area of 2290 µm2.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
    [CrossRef]
  2. A. E. Siegman, Lasers (University Science Books, 1986), pp. 385–386.
  3. X. Peng, K. Kim, M. Mielke, S. Jennings, G. Masor, D. Stohl, A. Chavez-Pirson, D. T. Nguyen, D. Rhonehouse, J. Zong, D. Churin, N. Peyghambarian, “High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation,” Opt. Express 21(21), 25440–25451 (2013).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. L. Dong, X. Peng, J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [CrossRef]
  6. J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, K. Regelskis, “Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber,” Opt. Express 21(5), 5338–5345 (2013).
    [CrossRef] [PubMed]
  7. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  8. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [CrossRef] [PubMed]
  9. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  10. J. W. Nicholson, J. M. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3M.3.
  11. X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
    [CrossRef]
  12. M. Mielke, X. Peng, K. Kim, T. Booth, W. Lee, G. Masor, X. Gu, R. Lu, M. Hamamoto, R. Cline, J. Nicholson, J. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “High energy, monolithic fiber femtosecond lasers,” in Conference on Lasers and Electro-Optics Europe/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2013), paper PD-A.3.
  13. V. R. Supradeepa, J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [CrossRef] [PubMed]

2013

2012

2011

2007

2006

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

2003

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2000

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Alkeskjold, T. T.

Banks, P. S.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Broeng, J.

Carstens, H.

Chavez-Pirson, A.

Churin, D.

Danilevicius, R.

Dong, L.

Eidam, T.

Feit, M. D.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Hädrich, S.

Hansen, K. R.

Jansen, F.

Jauregui, C.

Jennings, S.

Jørgensen, M. M.

Kim, K.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Komashko, A. M.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Lægsgaard, J.

Laurila, M.

Li, J.

Limpert, J.

Liu, L.

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

Masor, G.

Mielke, M.

Nguyen, D. T.

Nicholson, J. W.

Nie, Q.

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

Peng, X.

Perry, M. D.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Peyghambarian, N.

Regelskis, K.

Rhonehouse, D.

Rothhardt, J.

Rubenchik, A. M.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Rusteika, N.

Steinmetz, A.

Stohl, D.

Stuart, B. C.

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Stutzki, F.

Supradeepa, V. R.

Tünnermann, A.

Viskontas, K.

Wang, X.

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

Xu, T.

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

Želudevicius, J.

Zong, J.

J. Opt. Soc. Am. B

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

X. Wang, Q. Nie, T. Xu, L. Liu, “A review of the fabrication of optic fiber,” Proc. SPIE 6034, 60341D (2006).
[CrossRef]

P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, “Femtosecond laser materials processing,” Proc. SPIE 3934, 14–21 (2000).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science Books, 1986), pp. 385–386.

J. W. Nicholson, J. M. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3M.3.

M. Mielke, X. Peng, K. Kim, T. Booth, W. Lee, G. Masor, X. Gu, R. Lu, M. Hamamoto, R. Cline, J. Nicholson, J. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “High energy, monolithic fiber femtosecond lasers,” in Conference on Lasers and Electro-Optics Europe/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2013), paper PD-A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Side view of the HEM fiber with the input side angle-spliced to the silica mode field adaptor fiber (a), end view of the HEM fiber cross section (b), and side view of the HEM fiber angle-spliced to the 1000 µm un-doped coreless phosphate glass end-cap fiber. The image is captured by the splicer microscope vision system.

Fig. 2
Fig. 2

Schematic of the monolithic fiber CPA laser system generating millijoule femtosecond pulses at 1.55 µm. The Er-doped HEM fiber amplifier shown in Fig. 1 is used as the booster amplifier. The pulse duration, spectral shape, as well as its relative power evolution along the monolithic fiber-optical chain and the free-space compressor are plotted for reference. CFBG: chirped fiber Bragg grating.

Fig. 3
Fig. 3

(a) Optical spectra of the signal at the pulse shaper output when the pulse shaper is enabled (black) and when the pulse shaper is disabled (red), and (b) optical spectra of the signal at the HEM booster amplifier input (red) and at the compressor output (black).

Fig. 4
Fig. 4

Background-free SHG intensity autocorrelation of the fully compressed 913 μJ pulses (black solid line), and the theoretical sech2-shaped pulses (red dashed line) for reference. The estimated pulse duration is 485 fs. The inset shows the near field beam profile.

Metrics