Abstract

Photodynamic therapy for deep-lying lesions needs an appropriate imaging modality, precise evaluation of tissue oxygen and an effective photosensitizer. Gadolinium based metalloporphyrins Gd(III)-HMME is proposed in this study as a potential multifunctional theranostic agent, as photosensitizer, ratiometric oxygen sensor and MRI contrast agent. The time resolved spectroscopy revealed the luminescence peak of Gd(III)-HMME at 710 and 779 nm with a lifetime of 64 μs in oxygen-free methanol to be phosphorescent. This phosphorescence is strongly dependent on dissolved oxygen concentration. Its intensity in oxygen saturated methanol solution is 21% of that in deoxygenated solution. The singlet oxygen quantum yields ΦΔ of HMME and Gd(III)-HMME in air saturated methanol solution were determined to be 0.79 and 0.40 respectively using comparative spectra method. These phenomena indicate that the oxygen sensibility and production of singlet oxygen of Gd(III)-HMME can fulfill the requirement of PDT treatment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
    [CrossRef] [PubMed]
  2. S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
    [CrossRef] [PubMed]
  3. A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
    [CrossRef] [PubMed]
  4. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
    [CrossRef] [PubMed]
  5. M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
    [CrossRef] [PubMed]
  6. Y. Ni, “Metalloporphyrins and functional analogues as MRI contrast agents,” Curr. Med Imaging. Rev. 4(2), 96–112 (2008).
    [CrossRef]
  7. M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
    [CrossRef] [PubMed]
  8. H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
    [CrossRef]
  9. S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
    [CrossRef] [PubMed]
  10. K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
    [CrossRef] [PubMed]
  11. P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
    [CrossRef] [PubMed]
  12. H. J. Vreman, D. K. Stevenson, “Metalloporphyrin-enhanced photodegradation of bilirubin in vitro,” Am. J. Dis. Child. 144(5), 590–594 (1990).
    [PubMed]
  13. S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
    [PubMed]
  14. M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
    [CrossRef]
  15. C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
    [CrossRef] [PubMed]
  16. Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
    [CrossRef] [PubMed]
  17. V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
    [CrossRef] [PubMed]
  18. A. M. Evens, “Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer,” Curr. Opin. Oncol. 16(6), 576–580 (2004).
    [CrossRef] [PubMed]
  19. A. Harriman, “Luminescence of porphyrins and metalloporphyrins. Part 3. -Heavy-atom effects,” J. Chem. Soc., Faraday Trans. II 77(7), 1281–1291 (1981).
    [CrossRef]
  20. E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
    [CrossRef]
  21. J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
    [CrossRef] [PubMed]
  22. T. S. Srivastava, “Lanthanide octaethylprophyrins: preparation, association, and interaction with axial ligands,” Bioinorg. Chem. 8(1), 61–76 (1978).
    [CrossRef] [PubMed]
  23. A. Ogunsipe, T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. Chem. 173(2), 211–220 (2005).
    [CrossRef]
  24. S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
    [CrossRef] [PubMed]
  25. H. Ryeng, A. Ghosh, “Do nonplanar distortions of porphyrins bring about strongly red-shifted electronic spectra? Controversy, consensus, new developments, and relevance to chelatases,” J. Am. Chem. Soc. 124(27), 8099–8103 (2002).
    [CrossRef] [PubMed]
  26. M. Gouterman, “Optical spectra and electronic structure of porphyrins and related rings,” in The Porphyrins, Part 3A(Academic Press, 1978).
  27. T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
    [CrossRef] [PubMed]
  28. R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
    [CrossRef]

2013 (1)

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

2012 (1)

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

2011 (1)

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

2010 (3)

S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[CrossRef] [PubMed]

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. Ni, “Metalloporphyrins and functional analogues as MRI contrast agents,” Curr. Med Imaging. Rev. 4(2), 96–112 (2008).
[CrossRef]

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
[CrossRef] [PubMed]

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

2005 (1)

A. Ogunsipe, T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. Chem. 173(2), 211–220 (2005).
[CrossRef]

2004 (2)

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

A. M. Evens, “Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer,” Curr. Opin. Oncol. 16(6), 576–580 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Ryeng, A. Ghosh, “Do nonplanar distortions of porphyrins bring about strongly red-shifted electronic spectra? Controversy, consensus, new developments, and relevance to chelatases,” J. Am. Chem. Soc. 124(27), 8099–8103 (2002).
[CrossRef] [PubMed]

2000 (1)

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

1999 (1)

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

1998 (1)

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

1990 (1)

H. J. Vreman, D. K. Stevenson, “Metalloporphyrin-enhanced photodegradation of bilirubin in vitro,” Am. J. Dis. Child. 144(5), 590–594 (1990).
[PubMed]

1989 (1)

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

1983 (1)

R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
[CrossRef]

1981 (1)

A. Harriman, “Luminescence of porphyrins and metalloporphyrins. Part 3. -Heavy-atom effects,” J. Chem. Soc., Faraday Trans. II 77(7), 1281–1291 (1981).
[CrossRef]

1978 (1)

T. S. Srivastava, “Lanthanide octaethylprophyrins: preparation, association, and interaction with axial ligands,” Bioinorg. Chem. 8(1), 61–76 (1978).
[CrossRef] [PubMed]

Aly, Z.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Andersson-Engels, S.

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

Appleton, S. D.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Arridge, S. R.

Atalar, E.

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

Axelsson, J.

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

Battino, R.

R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
[CrossRef]

Bhaumik, J.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Bocian, D. F.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Borisov, S. M.

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[CrossRef] [PubMed]

Bosmans, H.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Bottrill, M.

M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
[CrossRef] [PubMed]

Brien, J. F.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Brown, T.

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

Brushett, C.

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

Cao, W.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Carollo, B. R.

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Celli, J. P.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Cheah, K. W.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Cheng, J.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Choe, R.

Chretien, M. L.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Corlu, A.

Dichtel, W. R.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Dogutan, D. K.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Duffy, M.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Durduran, T.

Ermolina, E. G.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Evans, C. L.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Evens, A. M.

A. M. Evens, “Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer,” Curr. Opin. Oncol. 16(6), 576–580 (2004).
[CrossRef] [PubMed]

Fleitz, P. A.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Frechet, J. M. J.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Gelblum, D. Y.

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Ghiggino, K. P.

S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
[CrossRef] [PubMed]

Ghosh, A.

H. Ryeng, A. Ghosh, “Do nonplanar distortions of porphyrins bring about strongly red-shifted electronic spectra? Controversy, consensus, new developments, and relevance to chelatases,” J. Am. Chem. Soc. 124(27), 8099–8103 (2002).
[CrossRef] [PubMed]

Glazner, G. F.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Guo, J. P.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Hamblin, M. R.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Harriman, A.

A. Harriman, “Luminescence of porphyrins and metalloporphyrins. Part 3. -Heavy-atom effects,” J. Chem. Soc., Faraday Trans. II 77(7), 1281–1291 (1981).
[CrossRef]

Hasan, T.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

He, H. S.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Holten, D.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Huang, Z.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Jarvi, M. T.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Johansson, A.

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

Kamal, Z.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Kee, H. L.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Khalid, L.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Klimant, I.

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[CrossRef] [PubMed]

Kopylova, T. N.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Koren, K.

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

Korovin, Y. V.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Krishnamurthy, S.

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

Kuznetsova, R. T.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Kwok, L.

M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
[CrossRef] [PubMed]

Lei, T. C.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Li, B.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Li, K. F.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Li, Q.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Li, Z.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Liang, H.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Lindsey, J. S.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Lo, W. K.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Long, N. J.

M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
[CrossRef] [PubMed]

Luo, L.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Marchal, G.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Marks, G. S.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Mathai, S.

S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
[CrossRef] [PubMed]

Maurice, D. H.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Mayer, G. V.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

McLaughlin, B. E.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Miao, Y.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Mroz, P.

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Nakatsu, K.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Nelson, K. L.

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Ni, Y.

Y. Ni, “Metalloporphyrins and functional analogues as MRI contrast agents,” Curr. Med Imaging. Rev. 4(2), 96–112 (2008).
[CrossRef]

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Niedre, M. J.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Nyokong, T.

A. Ogunsipe, T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. Chem. 173(2), 211–220 (2005).
[CrossRef]

Oar, M. A.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Ogunsipe, A.

A. Ogunsipe, T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. Chem. 173(2), 211–220 (2005).
[CrossRef]

Ohulchanskyy, T. Y.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Patterson, M. S.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Pendyala, S.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Peng, C.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Pislaru, C.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Pislaru, S.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Pogue, B. W.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Powers, S. K.

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

Prasad, P. N.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Qiu, B.

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

Rettich, T. R.

R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
[CrossRef]

Rizvi, I.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Rogers, J. E.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Rosen, M. A.

Runge, V. M.

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Rusakova, N. V.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Ryeng, H.

H. Ryeng, A. Ghosh, “Do nonplanar distortions of porphyrins bring about strongly red-shifted electronic spectra? Controversy, consensus, new developments, and relevance to chelatases,” J. Am. Chem. Soc. 124(27), 8099–8103 (2002).
[CrossRef] [PubMed]

Saf, R.

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

Samkoe, K. S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Scherrer, L.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Schnall, M. D.

Schweiger, M.

Semenishyn, N. N.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Semmler, W.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Serin, J. M.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Shi, S.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Slagle, J. E.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Smith, T. A.

S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
[CrossRef] [PubMed]

Solodova, T. A.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Spring, B. Q.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Srivastava, T. S.

T. S. Srivastava, “Lanthanide octaethylprophyrins: preparation, association, and interaction with axial ligands,” Bioinorg. Chem. 8(1), 61–76 (1978).
[CrossRef] [PubMed]

Stevenson, D. K.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

H. J. Vreman, D. K. Stevenson, “Metalloporphyrin-enhanced photodegradation of bilirubin in vitro,” Am. J. Dis. Child. 144(5), 590–594 (1990).
[PubMed]

Swartling, J.

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

Tan, L. S.

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Telminov, E. N.

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Tian, Y.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Tian, Z.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Tominaga, T.

R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
[CrossRef]

Van de Werf, F.

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

Verma, S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Vreman, H. J.

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

H. J. Vreman, D. K. Stevenson, “Metalloporphyrin-enhanced photodegradation of bilirubin in vitro,” Am. J. Dis. Child. 144(5), 590–594 (1990).
[PubMed]

Wang, H. W.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Wang, X. L.

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Wilson, B. C.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Witmer, P.

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

Wolf, C. R.

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Wong, W. K.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Wong, W. Y.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Yang, L.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Yang, X.

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

Zenkl, G.

S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[CrossRef] [PubMed]

Zhang, Z.

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

Zhao, Z. X.

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

Acad. Radiol. (1)

Y. Ni, C. Pislaru, H. Bosmans, S. Pislaru, Y. Miao, F. Van de Werf, W. Semmler, G. Marchal, “Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging,” Acad. Radiol. 5(Suppl 1), S37–S41, discussion S45–S46 (1998).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. M. Borisov, G. Zenkl, I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[CrossRef] [PubMed]

Am. J. Dis. Child. (1)

H. J. Vreman, D. K. Stevenson, “Metalloporphyrin-enhanced photodegradation of bilirubin in vitro,” Am. J. Dis. Child. 144(5), 590–594 (1990).
[PubMed]

Bioinorg. Chem. (1)

T. S. Srivastava, “Lanthanide octaethylprophyrins: preparation, association, and interaction with axial ligands,” Bioinorg. Chem. 8(1), 61–76 (1978).
[CrossRef] [PubMed]

Cancer Lett. (1)

P. Mroz, J. Bhaumik, D. K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H. L. Kee, D. F. Bocian, D. Holten, J. S. Lindsey, M. R. Hamblin, “Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production,” Cancer Lett. 282(1), 63–76 (2009).
[CrossRef] [PubMed]

Chem. Mater. (1)

M. A. Oar, W. R. Dichtel, J. M. Serin, J. M. J. Frechet, J. E. Rogers, J. E. Slagle, P. A. Fleitz, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, “Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET,” Chem. Mater. 18(16), 3682–3692 (2006).
[CrossRef]

Chem. Rev. (1)

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

M. Bottrill, L. Kwok, N. J. Long, “Lanthanides in magnetic resonance imaging,” Chem. Soc. Rev. 35(6), 557–571 (2006).
[CrossRef] [PubMed]

Curr. Med Imaging. Rev. (1)

Y. Ni, “Metalloporphyrins and functional analogues as MRI contrast agents,” Curr. Med Imaging. Rev. 4(2), 96–112 (2008).
[CrossRef]

Curr. Opin. Oncol. (1)

A. M. Evens, “Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer,” Curr. Opin. Oncol. 16(6), 576–580 (2004).
[CrossRef] [PubMed]

Drug Metab. Dispos. (1)

S. D. Appleton, M. L. Chretien, B. E. McLaughlin, H. J. Vreman, D. K. Stevenson, J. F. Brien, K. Nakatsu, D. H. Maurice, G. S. Marks, “Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations,” Drug Metab. Dispos. 27(10), 1214–1219 (1999).
[PubMed]

Dyes Pigments (1)

E. G. Ermolina, R. T. Kuznetsova, T. A. Solodova, E. N. Telminov, T. N. Kopylova, G. V. Mayer, N. N. Semenishyn, N. V. Rusakova, Y. V. Korovin, “Photophysics and oxygen sensing properties of tetraphenylporphyrin lanthanide complexes,” Dyes Pigments 97(1), 209–214 (2013).
[CrossRef]

Eur. J. Inorg. Chem. (2)

K. Koren, S. M. Borisov, R. Saf, I. Klimant, “Strongly phosphorescent iridium(III)-porphyrins new oxygen indicators with tunable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[CrossRef] [PubMed]

H. S. He, J. P. Guo, Z. X. Zhao, W. K. Wong, W. Y. Wong, W. K. Lo, K. F. Li, L. Luo, K. W. Cheah, “Synthesis, characterization and near-infrared photoluminescence of monoporphyrinate lanthanide complexes containing an anionic tripodal ligand,” Eur. J. Inorg. Chem. 2004(4), 837–845 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

H. Ryeng, A. Ghosh, “Do nonplanar distortions of porphyrins bring about strongly red-shifted electronic spectra? Controversy, consensus, new developments, and relevance to chelatases,” J. Am. Chem. Soc. 124(27), 8099–8103 (2002).
[CrossRef] [PubMed]

J. Chem. Soc., Faraday Trans. II (1)

A. Harriman, “Luminescence of porphyrins and metalloporphyrins. Part 3. -Heavy-atom effects,” J. Chem. Soc., Faraday Trans. II 77(7), 1281–1291 (1981).
[CrossRef]

J. Magn. Reson. Imaging (1)

C. Brushett, B. Qiu, E. Atalar, X. Yang, “High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium,” J. Magn. Reson. Imaging 27(1), 246–250 (2008).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

J. Cheng, H. Liang, Q. Li, C. Peng, Z. Li, S. Shi, L. Yang, Z. Tian, Y. Tian, Z. Zhang, W. Cao, “Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages,” J. Photochem. Photobiol. B 101(1), 9–15 (2010).
[CrossRef] [PubMed]

J. Photochem. Photobiol. Chem. (1)

A. Ogunsipe, T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. Chem. 173(2), 211–220 (2005).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

R. Battino, T. R. Rettich, T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data 12(2), 163–178 (1983).
[CrossRef]

Lasers Surg. Med. (1)

S. Krishnamurthy, S. K. Powers, P. Witmer, T. Brown, “Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors,” Lasers Surg. Med. 27(3), 224–234 (2000).
[CrossRef] [PubMed]

Med. Phys. (1)

A. Johansson, J. Axelsson, S. Andersson-Engels, J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys. 34(11), 4309–4321 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Photochem. Photobiol. (1)

M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, Challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

S. Mathai, T. A. Smith, K. P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6(9), 995–1002 (2007).
[CrossRef] [PubMed]

Photodiagn. Photodyn. Ther. (1)

T. C. Lei, G. F. Glazner, M. Duffy, L. Scherrer, S. Pendyala, B. Li, X. L. Wang, H. W. Wang, Z. Huang, “Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer,” Photodiagn. Photodyn. Ther. 9(3), 232–242 (2012).
[CrossRef] [PubMed]

Radiographics (1)

V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, D. Y. Gelblum, “Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging,” Radiographics 9(5), 929–958 (1989).
[CrossRef] [PubMed]

Other (1)

M. Gouterman, “Optical spectra and electronic structure of porphyrins and related rings,” in The Porphyrins, Part 3A(Academic Press, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Chemical structures of (a) HMME and (b) Gd(III)-HMME.

Fig. 2
Fig. 2

Mass spectrum of Gd(III)-HMME (Positive ion ESI source). [HMME + H+]: HMME molecule attached with a proton; [Cl-Gd(III)-HMME]+: Gd(III)-HMME molecule attached with one chloride ion.

Fig. 3
Fig. 3

Normalized absorption spectra (black solid line) of HMME and Gd(III)-HMME and the corresponding luminescence spectra (red solid line) in oxygen-free methanol solutions. The Soret bands and Q bands are labeled. The fluorescence emissions are labeled. Inset figure shows the weak fluorescence emission of Gd(III)-HMME. The strong room-temperature redshift luminescence emissions are marked as phosphorescence.

Fig. 4
Fig. 4

The decay curves of the fluorescence emission of HMME and Gd(III)-HMME at 625 nm in methanol solution (a) and the decay curve luminescence emission of Gd(III)-HMME at 710 nm in oxygen-free methanol solution (b).

Fig. 5
Fig. 5

The luminescence spectra of Gd(III)-HMME in methanol solutions with different dissolved oxygen concentrations. The fluorescence and phosphorescence peaks are labeled respectively.

Fig. 6
Fig. 6

The absorption spectra of DPBF in methanol solutions with (a) no photosensitizer (b) 1 μM Rose Bengal (c) 2 μM HMME (d) 2 μM Gd(III)-HMME with 532 nm laser illumination and recorded every 3 min.

Fig. 7
Fig. 7

Relative consumptions of DPBF under irradiation mixed with different photosensitizers and recorded every 3 min.

Tables (1)

Tables Icon

Table 1 Chemicals, concentrations and calculated degradation rates k, absorption Iabs and sensitization efficiencies ΦΔ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ Δ I abs k = Φ Δ ref I abs ref k ref ,
I abs = I 532 ( λ )×( 1 e ε( λ )NL )dλ ,

Metrics