Abstract

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cavity mode splitting is larger and smaller than the cavity mode linewidth. In both cases, coupled Q-factors up to 1600 and contrast ratios up to 10 are achieved. This design may allow for spin state readout of a self-assembled quantum dot positioned at the cavity center or function as an ultra-fast optical switch operating at the single photon level.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [CrossRef]
  2. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
    [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef]
  4. D. Loss, D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [CrossRef]
  5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef] [PubMed]
  6. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
    [CrossRef] [PubMed]
  7. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
    [CrossRef]
  8. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
    [CrossRef]
  9. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [CrossRef]
  10. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
    [CrossRef] [PubMed]
  11. A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [CrossRef]
  12. A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Opt. Express 20, 22412–22428 (2012).
    [CrossRef] [PubMed]
  13. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
    [CrossRef] [PubMed]
  14. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
    [CrossRef]
  15. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
    [CrossRef]
  16. M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
    [CrossRef]
  17. G.-H. Kim, Y.-H. Lee, A. Shinya, M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express 12, 6624–6631 (2004).
    [CrossRef] [PubMed]
  18. Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
    [CrossRef]
  19. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  20. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
    [CrossRef]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).
  22. A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
    [CrossRef]
  23. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
    [CrossRef]
  24. L. J. Martinez, A. Garcia-Martin, P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.
  25. A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, A. J. Shields, “In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide,” Opt. Express 20, 28614–28624 (2012).
    [CrossRef] [PubMed]
  26. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19, 5670–5675 (2011).
    [CrossRef] [PubMed]
  27. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666–2670 (2007).
    [CrossRef]
  28. N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
    [CrossRef]
  29. E. Waks, J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
    [CrossRef] [PubMed]
  30. S. S. Johnson, J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 363–376 (2001).
  31. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
    [CrossRef] [PubMed]
  32. F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
    [CrossRef] [PubMed]
  33. I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
    [CrossRef]
  34. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [CrossRef]
  35. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
    [CrossRef]
  36. J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
    [CrossRef]
  37. S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
    [CrossRef]
  38. A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

2013

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

2012

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, A. J. Shields, “In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide,” Opt. Express 20, 28614–28624 (2012).
[CrossRef] [PubMed]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Opt. Express 20, 22412–22428 (2012).
[CrossRef] [PubMed]

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

2011

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19, 5670–5675 (2011).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

2010

F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
[CrossRef] [PubMed]

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009

J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

2008

2007

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666–2670 (2007).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

2006

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

2005

E. Waks, J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
[CrossRef] [PubMed]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

2004

2001

S. S. Johnson, J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 363–376 (2001).

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

2000

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

1999

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

1998

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

D. Loss, D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Abram, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Achanta, V. G.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Akira Furusawa, J.

J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Alija, A. R.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

Arakawa, Y.

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Asano, T.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Awschalom, D.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Beveratos, A.

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

Bichler, M.

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Bonadeo, N. H.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Burkard, G.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Chalcraft, A. R. A.

Clarke, E.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

Coles, R. J.

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

Cryan, M. J.

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

DiVincenzo, D. P.

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

D. Loss, D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Ek, S.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Ellis, D. J. P.

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Erland, J.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

Faraon, A.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Farrer, I.

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Fox, A. M.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19, 5670–5675 (2011).
[CrossRef] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Gammon, D.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

Garcia-Martin, A.

L. J. Martinez, A. Garcia-Martin, P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.

Gordon, S.

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Grazioso, F.

F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
[CrossRef] [PubMed]

Griffiths, J. P.

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Heuck, M.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Höfling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Hugues, M.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ikeda, N.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Imamoglu, A.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Ishida, S.

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Iwamoto, S.

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. J.

S. S. Johnson, J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 363–376 (2001).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. S.

S. S. Johnson, J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 363–376 (2001).

Jones, B. D.

Jones, G. A. C.

Kalliakos, S.

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Karle, T.

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

Kasture, S.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

Katzer, D. S.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Kim, G.-H.

Kim, H.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Kono, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Krauss, T. F.

Kumagai, N.

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Kuznetsova, N.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Lam, S.

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Larqué, M.

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

Laurent, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Le Gratiet, L.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Lee, Y.-H.

Lematre, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Levenson, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Loss, D.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

D. Loss, D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Luxmoore, I. J.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Majumdar, A.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

Martinez, L. J.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

L. J. Martinez, A. Garcia-Martin, P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Meier, T.

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Michaelis de Vasconcellos, S.

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Miguel-Sanchez, J.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Mork, J.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[CrossRef] [PubMed]

Noda, S.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Nomura, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Notomi, M.

G.-H. Kim, Y.-H. Lee, A. Shinya, M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express 12, 6624–6631 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

O’Brien, J. L.

J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Ohkouchi, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ota, Y.

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Oulton, R.

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Park, D.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Patton, B. R.

F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
[CrossRef] [PubMed]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Petroff, P.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

Postigo, P. A.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

L. J. Martinez, A. Garcia-Martin, P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.

Quilter, J. H.

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

Raineri, F.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Ramsay, A. J.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

Rarity, J. G.

Ritchie, D. A.

Robert-Philip, I.

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sagnes, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Sato, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Schwagmann, A.

Seassal, C.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

Sellin, R.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Sherwin, M.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Shields, A. J.

Shinya, A.

G.-H. Kim, Y.-H. Lee, A. Shinya, M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express 12, 6624–6631 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

Shirane, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Skolnick, M. S.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19, 5670–5675 (2011).
[CrossRef] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Small, A.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Smith, J. M.

F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
[CrossRef] [PubMed]

Steel, D. G.

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Stoltz, N.

Sugimoto, Y.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Szymanski, D.

Takagi, H.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

Takahashi, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Tanaka, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Thijssen, A. C. T.

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

Tomita, A.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Upham, J.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

Ushida, J.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Varoutsis, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Viktorovitch, P.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

Vuckovic, J.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

E. Waks, J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
[CrossRef] [PubMed]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

E. Waks, J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
[CrossRef] [PubMed]

Wasley, N. A.

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Whittaker, D. M.

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

Yorozu, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

Yu, Y.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Yvind, K.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

Zrenner, A.

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett. 101, 251113 (2012).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006).
[CrossRef]

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett. 101, 051116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Appl. Phys. Lett. 102, 181108 (2013).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Fortschritte der Physik

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

J. Appl. Phys.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

J. Phys. D: Appl. Phys.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666–2670 (2007).
[CrossRef]

Nat. Photonics

S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nat. Photonics 4, 545–548 (2010).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2011).
[CrossRef]

J. L. O’Brien, J. Akira Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Nature

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012).
[CrossRef]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[CrossRef]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

New J. Phys.

M. Larqué, T. Karle, I. Robert-Philip, A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[CrossRef]

Opt. Express

G.-H. Kim, Y.-H. Lee, A. Shinya, M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express 12, 6624–6631 (2004).
[CrossRef] [PubMed]

A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Opt. Express 20, 22412–22428 (2012).
[CrossRef] [PubMed]

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20, 28292–29300 (2012).
[CrossRef] [PubMed]

E. Waks, J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
[CrossRef] [PubMed]

S. S. Johnson, J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 363–376 (2001).

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[CrossRef] [PubMed]

A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, A. J. Shields, “In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide,” Opt. Express 20, 28614–28624 (2012).
[CrossRef] [PubMed]

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19, 5670–5675 (2011).
[CrossRef] [PubMed]

Phys. Rev. A

D. Loss, D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Phys. Rev. Lett.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick, “Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons,” Phys. Rev. Lett. 110, 037402 (2013).
[CrossRef] [PubMed]

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett. 93, 040503 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 1–4 (2001).

A. Faraon, A. Majumdar, H. Kim, P. Petroff, J. Vučković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett. 104, 1–4 (2010).

Rev. Sci. Instrum.

F. Grazioso, B. R. Patton, J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81, 093705 (2010).
[CrossRef] [PubMed]

Science

N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science 282, 1473–1476 (1998).
[CrossRef] [PubMed]

Other

L. J. Martinez, A. Garcia-Martin, P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005,, G. Badenes, D. Abbott, A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Optimized H1 cavity structure with rc = 0.91r and ac = 1.09a. (b) Line-defect (W1) photonic crystal waveguide.

Fig. 2
Fig. 2

(a) & (b) Normalized Hz near-field amplitudes of the (a) X & (b) Y-dipole modes. The modes are labeled according to the orientation of the Hz dipole. A linear red-white-blue color scale is applied to represent fields up to 50% of the maximum value. Values above this have a saturated red or blue color. (c) Normalized Hz field amplitude of the odd parity guided mode of the W1 waveguide, using a full range linear red-white-blue color scale.

Fig. 3
Fig. 3

(a) Coupled cavity-waveguide structure defining Nx and Ny. (b) Waveguide coupling efficiency and (c) Q-factor of the cavity modes as a function of the number of holes separating them.

Fig. 4
Fig. 4

Normalized Hz field amplitudes of the coupled systems using Nx = 2, Ny = 4 for (a) X & (b) Y-dipole modes, respectively. The color scale is the same as used in Fig. 2(c).

Fig. 5
Fig. 5

(a) Schematic defining δSy and δW. δW was applied to both waveguides, but is only illustrated on the X-waveguide for clarity. (b) Coupling efficiency of the cavity modes to their respective waveguides as the first hole in the Y waveguide is shifted. (c) Dispersion of waveguides as inner hole rows are displaced outward. The dispersion curves were calculated using the frequency domain iterative eigensolver MPB [30].

Fig. 6
Fig. 6

(a) SEM image of fabricated device. OH & OV denote the vertical and horizontal outcouplers respectively, C is the cavity. (b) PL map obtained from a raster scan of the excitation spot whilst keeping collection fixed at the cavity. The spectrometer was used to filter PL from the center wavelength of the cavity modes. A contour of the device structure is overlaid.

Fig. 7
Fig. 7

PL spectra obtained when (a) collecting from the cavity (b) exciting the outcouplers and collecting from the cavity (c) exciting and collecting from the vertical (solid black) and horizontal (dashed black) outcouplers. (d) polarization dependence of the two cavity modes when collecting from the cavity. The green curve (square markers) corresponds to the peak centerd at 943.9nm and red (circular markers) to the peak at 945.2nm.

Fig. 8
Fig. 8

PL spectra obtained when (a) exciting and collecting from the cavity (b) collecting from the outcouplers. In (b) the curves are offset for clarity. (c) polarization dependence of the two cavity modes when collecting from the cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ( N x , y ) Q w g ( N x , y ) 1 Q c ( N x , y ) 1 = 1 Q c ( N x , y ) Q u
Q w g ( N x , y ) 1 = Q c ( N x , y ) 1 Q u 1

Metrics