Abstract

We demonstrated GaN-based photonic crystal (PC) nanobeam cavities by using the e-beam lithography and the suspended nanobeams were realized by focused-ion beam (FIB) milling. One resonant mode was clearly observed at 411.7 nm at 77K by optical pumping. The quality factor was measured to be to 7.4 × 102. Moreover, the degree of polarization value was measured to be 40%. The temperature-dependent characteristics were measured and discussed, which unambiguously demonstrated that the observed resonant peak originated from the band-edge mode of the one-dimensional PC nanobeam.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
    [CrossRef]
  4. M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
    [CrossRef]
  5. I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
    [CrossRef]
  6. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
    [CrossRef] [PubMed]
  7. T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
    [CrossRef]
  8. S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
    [CrossRef]
  9. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
    [CrossRef]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  11. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [CrossRef] [PubMed]
  12. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  13. M. Notomi, E. Kuramochi, H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
    [CrossRef] [PubMed]
  14. S. J. Kim, B. H. Ahn, J. Y. Kim, K. Y. Jeong, K. S. Kim, Y. H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
    [CrossRef] [PubMed]
  15. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
    [CrossRef]
  16. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
    [CrossRef]
  17. I. S. Maksymov, “Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,” Phys. Lett. A 375(5), 918–921 (2011).
    [CrossRef]
  18. Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [CrossRef]
  19. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
    [CrossRef] [PubMed]
  20. T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
    [CrossRef] [PubMed]
  21. E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001).
    [CrossRef] [PubMed]
  22. S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
    [CrossRef]
  23. S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
    [CrossRef]
  24. M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
    [CrossRef]
  25. D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
    [CrossRef]
  26. N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
    [CrossRef]
  27. S. W. Chang, T. R. Lin, S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
    [CrossRef] [PubMed]
  28. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
    [CrossRef] [PubMed]
  29. J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
    [CrossRef]
  30. N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
    [CrossRef]
  31. R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000).
    [CrossRef]
  32. N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
    [CrossRef]

2012

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
[CrossRef]

2011

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

S. J. Kim, B. H. Ahn, J. Y. Kim, K. Y. Jeong, K. S. Kim, Y. H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[CrossRef] [PubMed]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

I. S. Maksymov, “Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,” Phys. Lett. A 375(5), 918–921 (2011).
[CrossRef]

2010

Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

S. W. Chang, T. R. Lin, S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
[CrossRef] [PubMed]

2009

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

2008

N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[CrossRef] [PubMed]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

2007

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

2006

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

2004

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

2003

I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[CrossRef]

2002

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

2001

E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001).
[CrossRef] [PubMed]

2000

R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000).
[CrossRef]

1999

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Ahn, B. H.

Arakawa, Y.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
[CrossRef] [PubMed]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Arita, M.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

Ashley, T.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Atlasov, K. A.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Bewley, W. W.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Boucaud, P.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Bretagnon, T.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Bright, F. V.

E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001).
[CrossRef] [PubMed]

Brimont, C.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Butt, R.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Canedy, C. L.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Carlin, J.-F.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Castiglia, A.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Chang, S. W.

Checoury, X.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Chen, J. R.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

Chen, S. W.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Cho, E. J.

E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001).
[CrossRef] [PubMed]

Chuang, S. L.

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Cryan, M. J.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

David, S.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Deotare, P. B.

Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Dharanipathy, U.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Fan, S. H.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Gayral, B.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Grandjean, N.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Guillet, T.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Heard, P. J.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Ho, Y.-L. D.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Hori, Y.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Hoshino, K.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Houdr, R.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Huang, S. W.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Imada, M.

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ishida, S.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

Iwamoto, S.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
[CrossRef] [PubMed]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

Iwase, H.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Jeong, K. Y.

Jianglin, Y.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kako, S.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Kao, C. C.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Kao, T. T.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Kawashima, S.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Kawashima, T.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Kim, C. S.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, J. Y.

Kim, K. S.

Kim, M.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S. J.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kimoto, T.

N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
[CrossRef]

Kumagai, N.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
[CrossRef] [PubMed]

Kuo, H. C.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Kuramochi, E.

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

S. J. Kim, B. H. Ahn, J. Y. Kim, K. Y. Jeong, K. S. Kim, Y. H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Levrat, J.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Lin, L. F.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Lin, S. C.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

Lin, T. R.

Lindle, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Lu, T. C.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Maksymov, I. S.

I. S. Maksymov, “Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,” Phys. Lett. A 375(5), 918–921 (2011).
[CrossRef]

Matsubara, H.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Mexis, M.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Meyer, J.

I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[CrossRef]

Meyer, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Nagatomo, Y.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Nash, G. R.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Neel, D.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Noda, S.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Nomura, M.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008).
[CrossRef] [PubMed]

Notomi, M.

Numata, A.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ohta, R.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

Okada, N.

N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
[CrossRef]

Ota, Y.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Pugh, J. R.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Quan, Q. M.

Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Rarity, J. G.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Reeber, R. R.

R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000).
[CrossRef]

Rossbach, G.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Saito, H.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Sam-Giao, D.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Semond, F.

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Sergent, S.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Suda, J.

N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
[CrossRef]

Tadatomo, K.

N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
[CrossRef]

Tanabe, K.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

Tanaka, Y.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Tandaechanurat, A.

Taniyama, H.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

Trivin, N. V.

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

Uchida, M.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Uchida, T.

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vurgaftman, I.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[CrossRef]

Wang, K.

R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000).
[CrossRef]

Wang, S. C.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Watanabe, N.

N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, Y.

N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
[CrossRef]

Yamamoto, Y.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yoshimoto, S.

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Yu, P.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Anal. Chem.

E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012).
[CrossRef]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[CrossRef]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007).
[CrossRef]

D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011).
[CrossRef]

N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[CrossRef]

S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010).
[CrossRef]

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[CrossRef]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011).
[CrossRef]

Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

IEEE J. Quantum Electron.

I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[CrossRef]

J. Appl. Phys.

N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008).
[CrossRef]

N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012).
[CrossRef]

J. Mater. Res.

R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009).
[CrossRef]

Nano Lett.

T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[CrossRef] [PubMed]

Nat. Mater.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Nature

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Opt. Express

Phys. Lett. A

I. S. Maksymov, “Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,” Phys. Lett. A 375(5), 918–921 (2011).
[CrossRef]

Phys. Rev. B

M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics