Abstract

Water suspension of light-absorbing nano-sized particles is an example of a medium in which non-linear effects are present at moderate light intensities favorable for optical treatment of organic and biological objects. We study experimentally the phenomena emerging in a thin layer of such a medium under the action of inhomogeneous light field formed due to the Pearcey diffraction pattern near a microlens focus. In this high-gradient field, the light energy absorbed by the particles induces inhomogeneous distribution of the medium refraction index, which results in observable self-diffraction of the incident light, here being strongly sensitive to the medium position with respect to the focus. This technique, based on the complex spatial structure of both the incident and the diffracted fields, can be employed for the detection and measurement of weak non-linearities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. P. Gordon, “Stability of radiation-pressure particle traps: an optical Earnshaw theorem,” Opt. Lett. 8(10), 511–513 (1983).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  5. M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
    [CrossRef]
  6. T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).
  7. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [CrossRef] [PubMed]
  8. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [CrossRef] [PubMed]
  9. A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
    [CrossRef]
  10. A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
    [CrossRef]
  11. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86(2), 023847 (2012).
    [CrossRef]
  12. Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [CrossRef] [PubMed]
  13. A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  14. J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [CrossRef] [PubMed]
  15. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
    [CrossRef] [PubMed]
  16. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
    [CrossRef] [PubMed]
  17. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20(10), 11351–11356 (2012).
    [CrossRef] [PubMed]
  18. Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express 14(12), 5755–5764 (2006).
    [CrossRef] [PubMed]
  19. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles,” Opt. Express 21(7), 8922–8938 (2013).
    [CrossRef] [PubMed]
  20. D. N. Auston, D. J. Bradley, A. J. Campillo, K. B. Eisenthal, E. P. Ippen, D. von der Linde, C. V. Shank, and S. L. Shapiro, Ultrashort Light Pulses: Picosecond Technique and Applications (Springer-Verlag, 1977).
  21. S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
    [CrossRef]
  22. V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
    [CrossRef]
  23. S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
    [CrossRef]
  24. J.-G. Tian, C. Zhang, G. Zhang, “The origin of optical nonlinearities of chinese tea,” Optik (Stuttg.) 90, 1–4 (1992).
  25. J.-G. Tian, C. Zhang, G. Zhang, J. Li, “Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquid,” Appl. Opt. 32(33), 6628–6632 (1993).
    [CrossRef] [PubMed]
  26. K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).
  27. H.-J. Zhang, J.-H. Dai, P.-Y. Wang, L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14(13), 695–696 (1989).
    [CrossRef] [PubMed]
  28. M. Sheik-bahae, A. A. Said, E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]
  29. J. F. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A, Pure Appl. Opt. 5(5), 495–502 (2003).
    [CrossRef]
  30. J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe,” J. Opt. A, Pure Appl. Opt. 5(5), 503–510 (2003).
    [CrossRef]
  31. T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946).
  32. M. Born and E. Wolf, Principles of Optics (New York, Pergamon Press., 1999).
  33. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields (Springer-Verlag, 1989).
  34. P. Gerstner, J. Paltakari, P. A. C. Gane, “Measurement and modelling of heat transfer in paper coating structures,” http://www.tappi.org/Downloads/Conference-Papers/2008/08ADV/08adv26.aspx .
    [CrossRef]
  35. S. H. Simpson, S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 27(9), 2061–2071 (2010).
    [CrossRef] [PubMed]
  36. N. V. Malai, “Effect of motion of the medium on the photophoresis of hot hydrosol particles,” Fluid Dyn. 41(6), 984–991 (2006).
    [CrossRef]
  37. C. Y. Soong, W. K. Li, C. H. Liu, P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

2011 (1)

A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

2010 (2)

2009 (2)

2008 (1)

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

2007 (1)

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

2006 (3)

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

N. V. Malai, “Effect of motion of the medium on the photophoresis of hot hydrosol particles,” Fluid Dyn. 41(6), 984–991 (2006).
[CrossRef]

Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express 14(12), 5755–5764 (2006).
[CrossRef] [PubMed]

2003 (5)

J. F. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A, Pure Appl. Opt. 5(5), 495–502 (2003).
[CrossRef]

J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe,” J. Opt. A, Pure Appl. Opt. 5(5), 503–510 (2003).
[CrossRef]

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

1993 (2)

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

J.-G. Tian, C. Zhang, G. Zhang, J. Li, “Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquid,” Appl. Opt. 32(33), 6628–6632 (1993).
[CrossRef] [PubMed]

1992 (1)

J.-G. Tian, C. Zhang, G. Zhang, “The origin of optical nonlinearities of chinese tea,” Optik (Stuttg.) 90, 1–4 (1992).

1989 (2)

1986 (2)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

1983 (1)

1979 (1)

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

1968 (1)

S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
[CrossRef]

1946 (1)

T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946).

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
[CrossRef]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Angelsky, O. V.

Ashkin, A.

Bekshaev, A. Y.

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86(2), 023847 (2012).
[CrossRef]

A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Bekshaev, A. Ya.

Bjorkholm, J. E.

Bliokh, K.

A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Chiu, D. T.

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Chu, S.

Curtis, J. E.

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

Dai, J.-H.

Desyatnikov, A. S.

Dholakia, K.

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Dziedzic, J. M.

Edgar, J. S.

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Gordon, J. P.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

Gu, C.

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

Hanna, S.

Hanson, S. G.

Heckenberg, N. R.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Higuet, J.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Jaaskelainen, T.

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

Jeffries, G. D. M.

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Khokhlov, R. V.

S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
[CrossRef]

Kivshar, Y. S.

Knoner, G.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Krolikowski, W.

Kukhtarev, N. V.

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

Li, J.

Li, W. K.

Liu, C. H.

Loke, V. L. Y.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Malai, N. V.

N. V. Malai, “Effect of motion of the medium on the photophoresis of hot hydrosol particles,” Fluid Dyn. 41(6), 984–991 (2006).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

McGloin, D.

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Mokhun, I. I.

Moriya, N.

Nieminen, T. A.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Nye, J. F.

J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe,” J. Opt. A, Pure Appl. Opt. 5(5), 503–510 (2003).
[CrossRef]

J. F. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A, Pure Appl. Opt. 5(5), 495–502 (2003).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Odulov, S. G.

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

Padgett, M. J.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Parkin, S.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Pearcey, T.

T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946).

Peiponen, K.-E.

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

Rode, A. V.

Rubinsztein-Dunlop, H.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Said, A. A.

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Sheik-bahae, M.

Shimaoka, H.

Shvedov, V. G.

Simpson, S. H.

Singer, W.

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Soong, C. Y.

Soskin, M.

A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Soskin, M. S.

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
[CrossRef]

Tian, J.-G.

Totoki, S.

Tsunazawa, Y.

Tyurin, A. V.

Tzeng, P. Y.

Uma Maheswari, R.

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

Van Stryland, E. W.

Vinetskii, V. L.

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Wada, Y.

Wang, P.-Y.

Watanabe, M.

Wu, L.-A.

Zenkova, C. Y.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86(2), 023847 (2012).
[CrossRef]

Zenkova, C. Yu.

Zhang, C.

Zhang, G.

Zhang, H.-J.

Zhao, Y. Q.

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Fluid Dyn. (1)

N. V. Malai, “Effect of motion of the medium on the photophoresis of hot hydrosol particles,” Fluid Dyn. 41(6), 984–991 (2006).
[CrossRef]

J. Nanophoton. (1)

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

J. Opt. (2)

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[CrossRef]

A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

J. F. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A, Pure Appl. Opt. 5(5), 495–502 (2003).
[CrossRef]

J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe,” J. Opt. A, Pure Appl. Opt. 5(5), 503–510 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
[CrossRef] [PubMed]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20(10), 11351–11356 (2012).
[CrossRef] [PubMed]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles,” Opt. Express 21(7), 8922–8938 (2013).
[CrossRef] [PubMed]

Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express 14(12), 5755–5764 (2006).
[CrossRef] [PubMed]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
[CrossRef] [PubMed]

A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
[CrossRef] [PubMed]

C. Y. Soong, W. K. Li, C. H. Liu, P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Optik (Stuttg.) (2)

K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).

J.-G. Tian, C. Zhang, G. Zhang, “The origin of optical nonlinearities of chinese tea,” Optik (Stuttg.) 90, 1–4 (1992).

Philos. Mag. (1)

T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946).

Phys. Rev. A (1)

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86(2), 023847 (2012).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Proc. SPIE (1)

T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).

Sov. Phys. Usp. (3)

S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979).
[CrossRef]

S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics (New York, Pergamon Press., 1999).

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields (Springer-Verlag, 1989).

P. Gerstner, J. Paltakari, P. A. C. Gane, “Measurement and modelling of heat transfer in paper coating structures,” http://www.tappi.org/Downloads/Conference-Papers/2008/08ADV/08adv26.aspx .
[CrossRef]

D. N. Auston, D. J. Bradley, A. J. Campillo, K. B. Eisenthal, E. P. Ippen, D. von der Linde, C. V. Shank, and S. L. Shapiro, Ultrashort Light Pulses: Picosecond Technique and Applications (Springer-Verlag, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for calculation of the optical field focused by the cylindrical lens CL in the cell C with the disperse medium.

Fig. 2
Fig. 2

(a) Intensity distribution after the cylindrical lens calculated via Eq. (1) for r = 10 μm and λ = 445 nm, solid line is the lens contour; (b) experimental intensity pattern observed in the near-focus region.

Fig. 3
Fig. 3

Optical scheme of the setup for investigation of the focused beam transformation in the disperse medium (explanations in the text).

Fig. 4
Fig. 4

Results of the numerical calculations and experimental observations of the focused beam that has passed through the disperse medium situated at different distances from the lens focus ∆z; (і) calculated intensity profile in the near-focus region; (іі) calculated intensity profile behind the focus in the input plane of the CCD camera; (ііі) experimentally observed intensity distributions. Groups of images (a) – (j) correspond to different ∆z (see Table 2).

Fig. 5
Fig. 5

Comparison of the experimental (colored curve) and theoretical (black curve) intensity distributions along y = 0 in the plane of observation for conditions of Fig. 4e. The black curve coincides with that of Fig. 4e (ii) and. It is obtained via Eq. (2) with allowance for Eqs. (3) and (4) and the best fitting with the experimental data has been achieved at η = 9⋅10−2 s (see Table 2).

Tables (2)

Tables Icon

Table 1 Values of the disperse medium parameters used in the calculation of the radiation-induced refraction index modification (Eqs. (3) and (4)).

Tables Icon

Table 2 Correspondence between the cell shift with respect to the lens focus and the label of the three-image groups in Fig. 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U( ξ,z )= z iλ F(x) R 3/2 (x,z,ξ) exp{ ik[ R(x,z,ξ)+(m1)h(x) ] } dx
U( ξ ,z,Z )= Zz iλ U(ξ,z) R 3/2 ( Z,z,ξ, ξ ) exp( 1 2 αd ) ×exp{ i[ kR( Z,z,ξ, ξ )+kΔn(ξ,z)d ] }dξ,
q( ξ,z )=αηI( ξ,z )exp( αz ),
Δn=Δn( ξ,z )=( dn dT ) q( ξ,z ) Cρ

Metrics