Abstract

We propose a novel technique of enhancing the photodetection capabilities of ultrathin Ge films for normally incident light at 1.55 μm through the guided mode resonance (GMR) phenomenon. Specifically, by suitably patterning the surface of a Ge thin film, it is possible to excite guided modes which are subsequently coupled to free space radiative modes, resulting in spectral resonances that possess locally enhanced near fields with a large spatial extent. Absorption is found to be enhanced by over an order of magnitude over a pristine Ge film of equal thickness. Furthermore, attenuation of incident light for such a structure occurs over very few grating periods, resulting in significantly enhanced theoretical 3 dB bandwidth-efficiency products of ~58 GHz. The nature of the enhancement mechanism also produces spectrally narrow resonances (FWHM ~30 nm) that are polarization sensitive and exhibit excellent angular tolerance. Finally, the proposed device architecture is fully compatible with existing Si infrastructure and current CMOS fabrication processes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).
  2. L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
    [CrossRef]
  3. J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  4. L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
    [CrossRef] [PubMed]
  5. K. W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. F. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. In Quan. Electron. 16, 106–113 (2010).
  6. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
    [CrossRef]
  7. M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [CrossRef]
  8. Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef] [PubMed]
  9. J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  10. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  11. C. L. Tan, A. Karar, K. Alameh, Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Opt. Express 21(2), 1713–1725 (2013).
    [CrossRef] [PubMed]
  12. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [CrossRef]
  13. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
    [CrossRef] [PubMed]
  14. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  15. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  16. M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
    [CrossRef]
  17. J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
    [CrossRef]
  18. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
    [CrossRef]
  19. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
    [CrossRef]
  20. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [CrossRef]
  21. L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
    [CrossRef] [PubMed]
  22. T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
    [CrossRef]
  23. J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
    [CrossRef]
  24. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
    [CrossRef]
  25. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
    [CrossRef]
  26. G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
    [CrossRef]
  27. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
    [CrossRef] [PubMed]
  28. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  29. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [CrossRef]
  30. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  31. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  32. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
    [CrossRef] [PubMed]
  33. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
    [CrossRef] [PubMed]
  34. A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
    [CrossRef]
  35. C. Y. Wei, S. J. Liu, D. G. Deng, J. Shen, J. D. Shao, Z. X. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31(9), 1223–1225 (2006).
    [CrossRef] [PubMed]
  36. P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
    [CrossRef] [PubMed]
  37. Y. Kokubun, Lightwave Engineering (CRC Press, 2013).
  38. D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]

2013 (1)

2012 (2)

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

2011 (2)

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

2010 (4)

A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
[CrossRef]

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
[CrossRef] [PubMed]

J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

2009 (4)

2008 (3)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

2007 (1)

2006 (4)

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

C. Y. Wei, S. J. Liu, D. G. Deng, J. Shen, J. D. Shao, Z. X. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31(9), 1223–1225 (2006).
[CrossRef] [PubMed]

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

2005 (1)

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

2002 (1)

M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
[CrossRef]

2000 (1)

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[CrossRef]

1999 (3)

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

1998 (1)

1997 (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

1995 (1)

M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

1993 (1)

1992 (2)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

1991 (1)

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

1988 (1)

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Akatsu, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Akimov, Y. A.

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Alameh, K.

Allibert, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Asghari, M.

Assanto, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Atwater, H. A.

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Bai, P.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

Baribeau, J. M.

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Bestwick, T. D.

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Boussagol, A.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Broderick, L. Z.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Brongersma, M. L.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Campbell, J. C.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Campidelli, Y.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Cannon, D. D.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

Cao, L. Y.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Cassan, E.

Catchpole, K. R.

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Cheben, P.

Chen, K. M.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Chu, H. S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

Clavelier, L.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Clemens, B.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Colace, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Crozat, P.

Culshaw, I. S.

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Cunningham, J. E.

Damlencourt, J. F.

Defresart, E.

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Deguet, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Delâge, A.

Deng, D. G.

Denhoff, M. W.

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Densmore, A.

Denton, J.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Dong, P.

Dosunmu, O.

M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
[CrossRef]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

El Melhaoui, L.

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
[CrossRef]

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Fan, P. Y.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Fan, Z. X.

Fédéli, J. M.

Fédéli, J.-M.

Feng, D.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Feng, N.-N.

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

García, J.

Hartmann, J.-M.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Hesselink, L.

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Houghton, D. C.

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Jackman, T. E.

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Janz, S.

Johnson, S. G.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Karar, A.

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Kasper, E.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Kernevez, N.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Kimerling, L. C.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[CrossRef]

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Kley, E. B.

A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
[CrossRef]

Knez, M.

A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Koh, W. S.

Krishnamoorthy, A. V.

Kroesen, G. M. W.

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Kwong, D. L.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

Lapointe, J.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Laval, S.

Le Roux, X.

Lecunff, Y.

Lee, K. K.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Lee, Y. T.

Letertre, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Li, G.

Li, R.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Li, Y.

Liang, H.

Liao, S.

Lim, D. R.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Liu, J. F.

J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Liu, S. J.

Liu, Z. S.

Lo, G. Q.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

Lopinski, G.

Loup, V.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Luan, H. C.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Magnusson, R.

Maigne, P.

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

Mangeney, J.

Marris-Morini, D.

Masini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Matteo, J. A.

Mazen, F.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Mazure, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Michel, J.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

Mischki, T.

Munday, J. N.

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Neudeck, G. W.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Oehme, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Oehrlein, G. S.

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

Osmond, J.

Ostrikov, K.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Park, J. S.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Pascal, D.

Piché, M.

P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Poitras, D.

Polman, A.

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Richtarch, C.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Rouchon, D.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Rouvière, M.

Sanchez, L.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Sandland, J. G.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

Schaub, J. D.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Schmid, J. H.

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Schow, C. L.

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

Schulze, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

Shafiiha, R.

Shao, J. D.

Shen, J.

Sheng, X.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

Shin, D.

Signamarcheix, T.

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Sinclair, W.

Strite, S.

M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Szeghalmi, A.

A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
[CrossRef]

Tan, C. L.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

Tibuleac, S.

Unlu, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
[CrossRef]

M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Vivien, L.

Wada, K.

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Waldron, P.

Wang, S. S.

S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Wei, C. Y.

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Xu, D. X.

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Young, P. P.

Yuen, Y.

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Zhang, Y.

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Zheng, D.

Zhu, S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal sillicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[CrossRef]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, J. Schulze, “Germanium-Tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[CrossRef]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Appl. Surf. Sci. (1)

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. K. Emsley, O. Dosunmu, M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photon. Technol. Lett. 14(4), 519–521 (2002).
[CrossRef]

J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, G. W. Neudeck, J. Denton, “Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth,” IEEE Photon. Technol. Lett. 11(12), 1647–1649 (1999).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17(1), 175–177 (2005).
[CrossRef]

J. Appl. Phys. (2)

M. S. Unlu, S. Strite, “Resonant-cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys. 63(12), 5738–5746 (1988).
[CrossRef]

J. Phys. Chem. C (1)

A. Szeghalmi, E. B. Kley, M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114(49), 21150–21157 (2010).
[CrossRef]

J. Vac. Sci. Technol. A (1)

G. S. Oehrlein, G. M. W. Kroesen, E. Defresart, Y. Zhang, T. D. Bestwick, “Studies of the reactive ion etching of SiGe alloys,” J. Vac. Sci. Technol. A 9(3), 768–774 (1991).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, C. Mazure, “Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process. 9(4-5), 444–448 (2006).
[CrossRef]

Nano Lett. (2)

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. Michel, J. F. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Opt. Express (7)

C. L. Tan, A. Karar, K. Alameh, Y. T. Lee, “Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles,” Opt. Express 21(2), 1713–1725 (2013).
[CrossRef] [PubMed]

L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

P. R. Villeneuve, M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Solid State Phenom. (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, F. Evangelisti, “Ge/Si (001) photodetector for near infrared light,” Solid State Phenom. 54, 55–58 (1997).
[CrossRef]

Other (3)

Y. Kokubun, Lightwave Engineering (CRC Press, 2013).

D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).

K. W. Ang, T. Y. Liow, M. B. Yu, Q. Fang, J. F. Song, G. Q. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. In Quan. Electron. 16, 106–113 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Rough 3D schematic of active region of the proposed design. Here for simplicity, and without loss of generality we consider a Ge –on-insulator (GeOI) structure, consisting of partially etched gratings in a 200 nm thick Ge film on buried oxide. Definitions for angled incident light and associated polarizations are also shown in the coordinate system above. (b) Top view of one unit cell. The optimal design parameters under conditions for this particular study are shown: the period of the cell is 700 nm and the etched area is a square of side 410 nm. (c) Cross-sectional view showing relevant parameters in greater detail: a Ge film thickness of 200 nm and etch depth of 50 nm is found to yield maximum absorption at target wavelength of 1550 nm.

Fig. 2
Fig. 2

(a) Band diagram in the 1st BZ constructed by approximating the partially etched structure as a homogeneous slab with an averaged index, and using Eqs. (1)-(3) together with Bloch boundary conditions. “Guided” modes lie above the light line and are thus coupled Fano resonant modes. (b) FDTD simulation of spectra, response of the optimized design. The maximum absorption at target wavelength of 1.55 is ~43%, an enhancement of ~11 times compared to pristine Ge of equal (200 nm un-etched) thickness. The absorption of a pristine Ge film of equal thickness is shown as the green dashed line, (c) FDTD derived, source-normalized near field intensities of the y-z plane cross-section at 1550 nm. (d) The surface of a unit cell of the structure at 1550 nm. (e) y-z plane cross section electric field for an optimized, low loss Ag grating structure on Ge. White dotted lines trace the boundaries of the patterned structure.

Fig. 3
Fig. 3

Absorption spectra as a function of (a) grating period and (b) grating width, cyan lines (periodicity of 700 nm and width of 410 nm) represent optimized absorption at 1550 nm. Successive curves are offset by 0.5, and dashed lines are visual guides for the tuning of the resonance peaks. (c) Contour plot of enhancement factor as a function of grating depth and film thickness, and (d) as a function of grating depth and grating width. Data sets for (c) and (d) have a resolution of half a major tick length, and have been smoothed to fit their respective contours.

Fig. 4
Fig. 4

(a) Parametrization of Ge absorption enhancement (against reference absorption of 4%) against the number of periods at 1.55 μm at normal incidence. Solid line corresponds to the proposed GMR structure; dashed line corresponds to an optimized Ag plasmonic grating overlaid on equal thickness of Ge. The Ag grating is found to exhibit significantly lower absorption (~10%) for the same number of periods. (b) Cross-sectional and top view electric field profile diagrams normalized to a common source intensity at 1.55 μm. Source dimensions and structural features are outlined in white dashed lines. Note that the resonant modes decay (due to material and radiative losses) in just a few periods.

Fig. 5
Fig. 5

(a) Transit time and capacitance limited bandwidth as a function of depletion zone thickness. Different device areas with their corresponding number of grating periods are shown. (b) Calculated bandwidth-efficiency products for various types of Ge NI detectors. Relevant data is obtained from Ref [3]. The proposed design exhibits significantly improved performance over regular normal incidence detectors and is comparable to waveguide detectors for some size regimes.

Fig. 6
Fig. 6

(a) Spectral response of the device under TE and TM polarizations with varying angle of incidence, negligible shifts to the 1550 nm resonance peak is observed for TM light up to 10° angle of incidence. For TE light the peak rapidly splits into two smaller peaks. (b) Band diagram reproduced from Fig. 2(a), showing the breaking of degeneracy (manifested as splitting of resonance peaks) for oblique incidences due to the introduction of non-zero x and y direction wavevectors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tan( β wg d )= β wg ( β sub + β air ) β wg 2 β sub β air ,
tan( β wg d )= n eff 2 β wg ( β sub + n sub 2 β air ) n sub 2 β wg 2 n eff 4 β sub β air ,
ω cutoff = c d n eff 2 n sub 2 [ tan 1 ( n i n sub 2 1 n eff 2 n sub 2 )+jπ ]
f τ =0.45 v h L d ,
f RC = L d 2π R T ε r ε 0 A

Metrics