Abstract

Extraordinary optical transmission through rectangular Sierpinski -Carpet aperture array on an Ag film has been observed. Attributed to the fractal-featured rectangle array, it exhibits polarization dependence and dual-band transmission simultaneously. In addition, the incident angle invariance transmission displays within a certain angle range, which is quite different from ordinary rectangles. This report provides a way to achieve the polarization-manipulated multi-band transmission in infrared region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  4. Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
    [CrossRef]
  5. K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
    [CrossRef]
  6. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
    [CrossRef]
  7. E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
    [CrossRef]
  8. J. H. Kim, P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett. 89(12), 121106 (2006).
    [CrossRef]
  9. E. C. Kinzel, X. F. Xu, “Extraordinary infrared transmission through a periodic bowtie aperture array,” Opt. Lett. 35(7), 992–994 (2010).
    [CrossRef] [PubMed]
  10. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
    [CrossRef]
  11. W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
    [CrossRef]
  12. W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
    [CrossRef]
  13. Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
    [CrossRef]
  14. A. Degiron, T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  15. Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
    [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [CrossRef] [PubMed]
  17. A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [CrossRef]
  18. Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  19. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  20. Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

2013

Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
[CrossRef]

2011

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

2010

2009

2007

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

J. H. Kim, P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett. 89(12), 121106 (2006).
[CrossRef]

2005

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

A. Degiron, T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

2004

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

2003

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

2000

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1983

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Chan, C.

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Chan, C. T.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Chen, C.-Y.

Chen, Y. H.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Degiron, A.

A. Degiron, T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Ebbesen, T.

A. Degiron, T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Ge, W. K.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Genet, C.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

Hou, B.

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Hu, X.

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

Jiang, Y.-W.

Kim, J. H.

J. H. Kim, P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett. 89(12), 121106 (2006).
[CrossRef]

Kinzel, E. C.

Koerkamp, K.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Lee, S.-C.

Lezec, H.

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Lezec, H. J.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Long, L. L.

Luo, S.

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

Moyer, P. J.

J. H. Kim, P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett. 89(12), 121106 (2006).
[CrossRef]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Ordal, M. A.

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

Popov, E.

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Qiu, M.

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Qiu, Y.

Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
[CrossRef]

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

Ruan, Z.

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

Shen, Q.

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Sheng, P.

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Thio, T.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tsai, M.-W.

Tzuang, L. D.

van der Molen, K. L.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

Ward, C. A.

Wen, W.

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

Wen, W. J.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, Y.-T.

Xia, Y.

Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
[CrossRef]

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

Xu, G.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Xu, X. F.

Yamamoto, N.

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Yang, Z.

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Ye, Y.-H.

Zhan, L.

Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
[CrossRef]

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

Zhou, L.

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

W. J. Wen, Z. Yang, G. Xu, Y. H. Chen, L. Zhou, W. K. Ge, C. T. Chan, P. Sheng, “Infrared passbands from fractal slit patterns on a metal plate,” Appl. Phys. Lett. 83(11), 2106–2108 (2003).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[CrossRef]

J. H. Kim, P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole arrays,” Appl. Phys. Lett. 89(12), 121106 (2006).
[CrossRef]

Displays

Y. Qiu, L. Zhan, X. Hu, S. Luo, Y. Xia, “Demonstration of color filters for OLED display based on extra- ordinary optical transmission through periodic hole array on metallic film,” Displays 32(5), 308–312 (2011).

IEEE J. Sel. Top. Quantum Electron.

Y. Qiu, L. Zhan, Y. Xia, “Polarization-manipulated dual-band enhanced optical transmission through sub-wavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600106 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Qiu, X. Hu, L. Zhan, Q. Shen, Y. Xia, “Near-infrared polarization-manipulated anisotropic transmission through metallic array of subwavelength fractal slits,” IEEE Photon. Technol. Lett. 23(10), 630–632 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Degiron, T. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Nature

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Degiron, H. Lezec, N. Yamamoto, T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B

W. Wen, L. Zhou, B. Hou, C. Chan, P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
[CrossRef]

K. L. van der Molen, K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Phys. Rev. Lett.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Z. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The SEM image of the single structure on the Ag film. (b) The simulated single structure on the Ag film (left panel) and the magnified part (right panel) as a single element. The single structure is 2.7 × 5.4 μm2. The specific parameters of the single element are shown in right panel. The period along x-axis Px is 0.9 μm and along y-axis Py is 1.8 μm. (c) The sketch of incident light direction.

Fig. 2
Fig. 2

The transmission spectra of different polarization angles. (a) In the short wavelength (SW) region, below 1 μm. (b) In the long wavelength (LW) region, beyond 1 μm.

Fig. 3
Fig. 3

The divided parts of the single element: (a) the rectangular lattice and (b) the center rectangle. (c) The zero-order transmission of each part. (d) The x-axis polarized spectra of the rectangle array with the same size hole in different periods. The parameters of the lattice: Px = 0.9 μm, Py = 1.8 μm (black line); Px = 1.05 μm, Py = 2.1 μm (red line); Px = 1.2 μm, Py = 2.4 μm (blue line).

Fig. 4
Fig. 4

(a) The transmission of the SW peak and (b) the transmission of the LW peak, under different incident angles with a step change of 5 degrees.

Fig. 5
Fig. 5

The surface energy flux distributions of the two peaks in x polarization. (a) At 788 nm, the single element (left panel) and the rectangular lattice (right panel). (b) At 1.97 μm, the single element (left panel) and the center big rectangle (right panel).

Fig. 6
Fig. 6

The experimental results of the structure under different polarization states: (a) the SW peaks and (b) the LW peaks.

Fig. 7
Fig. 7

The transmission spectra of the 0.788 μm peak (a) and the 1.97 μm peak (b) at different incident angles, respectively. Angle invariance and corresponding transmission intensity of the two peaks: the 0.788 μm peak (c) and the 1.97 μm peak (d) for various oblique incidence cases.

Metrics