Abstract

The effects of MPE (maximum permissible exposure) on the characteristics of electro-holographic displays are analyzed. The main effect is the reduction in the spectral range to be presented by the displays. The range will be reduced more as the pixel and hologram sizes of the displays become smaller and larger, respectively. The spectral range for the hologram size 0.5m and pixel size 0.8µm will be about 50nm less than that of the visible. In addition to the spectral range, the reconstructed image size should not be smaller than the value defined by 0.1 times of the diffracted intensity of the image to meet the MPE requirement for eye.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-Y. Son, B. Javidi, “Three-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
    [CrossRef]
  2. J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).
  3. F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
    [CrossRef]
  4. J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).
  5. K. Machida, D. Kato, T. Mishina, H. Kinjo, K. Aoshima, K. Kuga, H. Kikuchi, and N. Shimidzu, “Three-dimensional image reconstruction with a wide viewing-zone-angle using a GMR-based hologram,” in Digital Holography and 3D Imaging Technical Digest, OSA (2013), DTh2A.5.
  6. M. Gower and D. Proch (Eds.), Optical Phase Conjugation (Springer, 1994).
  7. D. C. O’Shea, W. R. Callen, and W. T. Rhodes, An Introduction to Lasers and Their Applications (Addison-Wesley, 1977).
  8. www.psi.manchester.ac.uk
  9. A. Valberg, Light Vision Color (John Wiley, 2005).
  10. J.-Y. Son, B.-R. Lee, O. O. Chernyshov, K.-A. Moon, H. Lee, “Holographic display based on a spatial DMD array,” Opt. Lett. 38(16), 3173–3176 (2013).
    [CrossRef] [PubMed]
  11. J.-Y. Son, C.-H. Lee, O. O. Chernyshov, B.-R. Lee, S. K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441–20451 (2013).
    [CrossRef] [PubMed]
  12. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Student Edition (Academic, 1971).
  13. F. A. Jenkins and H. E. White, Fundamental of Optics, Korean Student Edition (McGraw- Hill, 1976).
  14. Personal communication with Dr. Dae-Sik Kim of Digital media and communication Div., Samsung Electronics.

2013

2010

F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

2006

J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).

2005

J.-Y. Son, B. Javidi, “Three-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[CrossRef]

1989

J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).

Benton, S. A.

J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).

Chernyshov, O. O.

Javidi, B.

J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).

J.-Y. Son, B. Javidi, “Three-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[CrossRef]

Jepsen, M. I.

J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).

Kang, H.

F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Kim, S. K.

Kollin, J. S.

J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).

Kwack, K.-D.

J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).

Lee, B.-R.

Lee, C.-H.

Lee, H.

Moon, K.-A.

Onural, L.

F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Son, J.-Y.

J.-Y. Son, B.-R. Lee, O. O. Chernyshov, K.-A. Moon, H. Lee, “Holographic display based on a spatial DMD array,” Opt. Lett. 38(16), 3173–3176 (2013).
[CrossRef] [PubMed]

J.-Y. Son, C.-H. Lee, O. O. Chernyshov, B.-R. Lee, S. K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441–20451 (2013).
[CrossRef] [PubMed]

J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).

J.-Y. Son, B. Javidi, “Three-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[CrossRef]

Yaras, F.

F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

J. Disp. Technol.

F. Yaras, H. Kang, L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

J.-Y. Son, B. Javidi, “Three-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

J.-Y. Son, B. Javidi, K.-D. Kwack, “Methods for displaying 3 dimensional images,” Proc. IEEE 94(3), 502–523 (2006).

Proc. SPIE

J. S. Kollin, S. A. Benton, M. I. Jepsen, “Real-time display of 3-D computed hologram by scanning the image of acousto-optic modulator,” Proc. SPIE 1136, 178 (1989).

Other

K. Machida, D. Kato, T. Mishina, H. Kinjo, K. Aoshima, K. Kuga, H. Kikuchi, and N. Shimidzu, “Three-dimensional image reconstruction with a wide viewing-zone-angle using a GMR-based hologram,” in Digital Holography and 3D Imaging Technical Digest, OSA (2013), DTh2A.5.

M. Gower and D. Proch (Eds.), Optical Phase Conjugation (Springer, 1994).

D. C. O’Shea, W. R. Callen, and W. T. Rhodes, An Introduction to Lasers and Their Applications (Addison-Wesley, 1977).

www.psi.manchester.ac.uk

A. Valberg, Light Vision Color (John Wiley, 2005).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Student Edition (Academic, 1971).

F. A. Jenkins and H. E. White, Fundamental of Optics, Korean Student Edition (McGraw- Hill, 1976).

Personal communication with Dr. Dae-Sik Kim of Digital media and communication Div., Samsung Electronics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral response curve of human eye: Photopic vision.

Fig. 2
Fig. 2

Diffracted pattern from a display chip: L0, L1, L2, L3, L4, L5 and L6, represent (0,0)th, (0,1)th, (1,0)th, (0,-1)th, (−1,0)th, (−1,-1)th, (1,1)th order beams, respectively, and L7 and L8 are the cross sectional areas of image spaces for (0,1)th and (1,0)th order beams, respectively.

Fig. 3
Fig. 3

Simplified image of Fig. 2 for the identification of image space: (a) Simplified image of Fig. 2 and (b) the magnified view of image space.

Fig. 4
Fig. 4

Spectral Response of Electro-holographic displays based on display chips/panels.

Fig. 5
Fig. 5

Spectral responses of Electro-holographic display for h = 0.5 m when r = 3 (a), 6 (b) and 8m (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h I =h(rd)/d d={h(1+tan θ D tan θ C )}/{tan θ C (1+ tan 2 θ D )}, A C = h I rtan θ D
h I ={(rtan θ C h)+tan θ D tan θ C (rtan θ D h)}/(1+tan θ D tan θ C )
S A = h I rtan θ D /r 2 =2rsin θ D sin( θ C /2)(1+tan θ D tan( θ C /2)/(rd),
B H = 680 I L E D G E h S e / A I S A ,
10 W/m 2 I L E D G E h / A I ( 15 / 34 ) S A / S e

Metrics