Abstract

In this paper, we investigate the optimal carrier-to-sideband ratio (CSR) for optical double-sideband (DSB) signals in radio-over-fiber (RoF) transmission. A pre-distortion method based on spectral shaping is proposed to optimize the signal CSR and eliminate the dispersion-induced power fading. A 12 GHz RoF transmission over 29 km standard single mode fiber (SSMF) is experimentally demonstrated which reveals that pre-distorted DSB has a 4.4 dB improvement over the one without pre-distortion, and 1.2 dB sensitivity advantage over single sideband (SSB) both with optimal CSR. The pre-distortion method is also applied to multi-channel transmission. The multi-channel experiment shows that for all channels the dispersion-induced power fading effects can be simultaneously mitigated and the pre-distorted DSB signals have ~1 dB sensitivity improvement over the SSB signals.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Seeds, K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  2. J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  3. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  4. M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [CrossRef]
  5. C. Lim, T. A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
    [CrossRef]
  6. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [CrossRef]
  7. D. Fonseca, A. V. T. Cartaxo, P. Monteiro, “Optical single-sideband transmitter for various electrical signaling formats,” J. Lightwave Technol. 24(5), 2059–2069 (2006).
    [CrossRef]
  8. Z. Xu, X. Zhang, J. Yu, “Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
    [CrossRef] [PubMed]
  9. U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
    [CrossRef]
  10. Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
    [CrossRef]
  11. S. Li, X. Zheng, H. Zhang, B. Zhou, “Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation,” Opt. Lett. 36(4), 546–548 (2011).
    [CrossRef] [PubMed]
  12. G. H. Nguyen, J. Poette, B. Cabon, “Importance of Chirp Effect in Millimeter Wave Optical Upconversion Systems,” J. Lightwave Technol. 29(12), 1753–1758 (2011).
    [CrossRef]
  13. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
    [CrossRef]
  14. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
    [CrossRef]
  15. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
    [CrossRef]
  16. D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
    [CrossRef]
  17. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  18. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [CrossRef]
  19. J. T. Willits, A. M. Weiner, S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
    [CrossRef] [PubMed]
  20. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
    [CrossRef]

2012 (2)

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

J. T. Willits, A. M. Weiner, S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (1)

2007 (3)

2006 (5)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

D. Fonseca, A. V. T. Cartaxo, P. Monteiro, “Optical single-sideband transmitter for various electrical signaling formats,” J. Lightwave Technol. 24(5), 2059–2069 (2006).
[CrossRef]

J. Seeds, K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

2000 (1)

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

1996 (1)

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

1995 (1)

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Bakaul, M.

Bayval, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Cabon, B.

Capmany, J.

J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Cartaxo, A. V. T.

Chang, G.-K.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Charlet, G.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

Cui, Y.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Cundiff, S. T.

Dai, J.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Dai, Y. T.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

Fonseca, D.

Gamage, P.

George, J.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Huignard, J.-P.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

Ji, Y. F.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Kobyakov, A.

Laperle, C.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

Lee, K.-L.

Li, C. D.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

Li, S.

Lim, C.

C. Lim, T. A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Lin, J. T.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Mak, G.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

McGhan, D.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Monteiro, P.

Nguyen, G. H.

Nielsen, T. N.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Nirmalathas, T. A.

Norskov, S.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Novak, D.

J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

O'Sullivan, M.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

Poette, J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Sauer, M.

Savchenkov, A.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

Schmuck, H.

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

Seeds, J.

St. J. Russell, P.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Sun, X. Q.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Waterhouse, R.

C. Lim, T. A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Weiner, A. M.

Williams, K. J.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Willits, J. T.

Xu, K.

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

Xu, Z.

Yang, Y.

Yao, J. P.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Yu, J.

Z. Xu, X. Zhang, J. Yu, “Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
[CrossRef] [PubMed]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Zhang, H.

Zhang, X.

Zheng, X.

Zhou, B.

Electron. Lett. (2)

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000).
[CrossRef]

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

J. Lightwave Technol. (6)

Nat. Photonics (1)

J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual diagram of pre-distortion method for optical DSB signals using a Waveshaper.

Fig. 2
Fig. 2

Experimental setup for a pre-distorted ROF system. (IM: intensity modulator; WS: Waveshaper; PD: photodiode; LPF: low pass filter). Insets (i), (ii) and (iii) are the initial DSB signal spectrum, pre-distorted DSB and SSB signal spectra with optimal CSR, respectively.

Fig. 3
Fig. 3

Required received optical power for a BER of 10-3 versus CSR for DSB and SSB signals.

Fig. 4
Fig. 4

(a) Back-to-back BER performance for optical SSB and DSB signals with different CSRs; (b) Required received power at the BER of 10−3 versus unit phase shift per GHz2 for back-to-back DSB signals with 3 dB CSR.

Fig. 5
Fig. 5

(a) BER curve for SSB signals with 0 dB SCR, DSB signals with 3 dB CSR with and without pre-distortion after 29 km transmission; (b) Required received power at the BER of 10−3 versus unit phase shift per GHz2 for the Waveshaper setting.

Fig. 6
Fig. 6

Experimental setup of multichannel transmission. Insets (i) and (ii) are the DSB and SSB signal spectra with optimal CSR respectively.

Fig. 7
Fig. 7

(a) BER curve of the middle channel for SSB signals with 0 dB CSR, DSB signals with 3 dB CSR with and without pre-distortion in multi- channel transmission; (b) Required received power at the BER of 10−3 for each channel.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I sig 2 α(12α) P rec , 0α1.
E(t)cos[ U b V π π 2 + U RF V π π 2 cos(2π f RF t)]cos(2π f 0 t)
E(t) J 0 (m)cos(2π f 0 t+ φ 0 + φ 0 ) J 1 (m){cos[2π( f 0 f RF )t+ φ 1 + φ 1 ]+cos[2π( f 0 + f RF )t+ φ 2 + φ 2 ]}+...
P f cos 2 [ φ 1 + φ 1 + φ 2 + φ 2 2 ( φ 0 + φ 0 )]= cos 2 [ ( φ 1 + φ 2 2 φ 0 ) 2 + ( φ 1 + φ 2 2 φ 0 ) 2 ].
P f = cos 2 ( πDL λ 2 c f RF 2 + φ 1 )
φ 0 =0 and φ 1 = φ 2 = πDL λ 2 c f RF 2
Pu= πDL λ 2 c

Metrics