Abstract

In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization coherent optical communications with adaptive polarization control over atmospheric turbulence

Shengli Ding, Ruijie Li, Yufei Luo, and Anhong Dang
J. Opt. Soc. Am. A 35(7) 1204-1211 (2018)

Experimental study of the turbulence effect on underwater optical wireless communications

Zahra Vali, Asghar Gholami, Zabih Ghassemlooy, Masood Omoomi, and David G. Michelson
Appl. Opt. 57(28) 8314-8319 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
    [Crossref]
  2. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  3. M. Niu, X. Song, J. Cheng, and J. F. Holzman, “Performance analysis of coherent wireless optical communications with atmospheric turbulence,” Opt. Express 20(6), 6515–6520 (2012).
    [Crossref] [PubMed]
  4. A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep. 2(4), 345–396 (2005).
    [Crossref]
  5. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).
    [Crossref] [PubMed]
  6. X. Ji and G. Ji, “Effect of turbulence on the beam quality of apertured partially coherent beams,” J. Opt. Soc. Am. A 25(6), 1246–1252 (2008).
    [Crossref] [PubMed]
  7. M. L. Wesely, “The combined effect of temperature and humidity fluctuations on refractive index,” J. Appl. Meteorol. 15(1), 43–49 (1976).
    [Crossref]
  8. N. Cvijetic, D. Qian, J. Yu, Y. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol. 28(8), 1218–1227 (2010).
    [Crossref]
  9. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref] [PubMed]
  10. G. Xie, F. Wang, A. Dang, and H. Guo, “A novel polarization-multiplexing system for free-space optical links,” Photon. Technol. Lett. 23(20), 1484–1486 (2011).
    [Crossref]
  11. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
    [Crossref] [PubMed]
  12. X. Tang, Z. Xu, and Z. Ghassemlooy, “Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel,” J. Lightwave Technol. 31(20), 3221–3228 (2013).
    [Crossref]
  13. X. Zhao, Y. Yao, Y. Sun, and C. Liu, “Circle polarization shift keying with direct detection for free-space optical communication,” J. Opt. Commun. Netw. 1(4), 307–312 (2009).
  14. Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “Experimental investigation of polarization modulated free space optical communication with direct detection in a turbulence channel,” IET Commun. 6(11), 1489–1494 (2012).
    [Crossref]
  15. J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of -arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antenn. Propag. 15(3), 416–421 (1967).
    [Crossref]
  16. E. Collett and R. Alferness, “Depolarization of a laser beam in a turbulent medium,” J. Opt. Soc. Am. 62(4), 529–533 (1972).
    [Crossref]
  17. D. H. Höhn, “Depolarization of a laser beam at 6328 Ǻ due to atmospheric transmission,” Appl. Opt. 8(2), 367–369 (1969).
    [Crossref] [PubMed]
  18. M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, and H. Kunimori, “Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space,” Opt. Express 17(25), 22333–22340 (2009).
    [Crossref] [PubMed]
  19. D. F. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. 11(5), 1641–1643 (1994).
    [Crossref]
  20. X. Ji and X. Chen, “Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence,” Opt. Laser Technol. 41(2), 165–171 (2009).
    [Crossref]
  21. F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
    [Crossref]
  22. Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
    [Crossref]
  23. O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284(7), 1740–1746 (2011).
    [Crossref]
  24. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [Crossref]
  25. Y. Han, A. Dang, Y. Ren, J. Tang, and H. Guo, “Theoretical and experimental studies of turbo product code with time diversity in free space optical communication,” Opt. Express 18(26), 26978–26988 (2010).
    [Crossref] [PubMed]
  26. M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
    [Crossref]
  27. A. Dang, “A closed-form solution of the bit-error rate for optical wireless communication systems over atmospheric turbulence channels,” Opt. Express 19(4), 3494–3502 (2011).
    [Crossref] [PubMed]
  28. A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” J. Opt. Commun. Netw. 4(10), 836–846 (2012).
    [Crossref]
  29. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46(11), 2099–2108 (2007).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (3)

2011 (4)

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284(7), 1740–1746 (2011).
[Crossref]

A. Dang, “A closed-form solution of the bit-error rate for optical wireless communication systems over atmospheric turbulence channels,” Opt. Express 19(4), 3494–3502 (2011).
[Crossref] [PubMed]

G. Xie, F. Wang, A. Dang, and H. Guo, “A novel polarization-multiplexing system for free-space optical links,” Photon. Technol. Lett. 23(20), 1484–1486 (2011).
[Crossref]

2010 (2)

2009 (4)

X. Ji and X. Chen, “Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence,” Opt. Laser Technol. 41(2), 165–171 (2009).
[Crossref]

F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
[Crossref]

X. Zhao, Y. Yao, Y. Sun, and C. Liu, “Circle polarization shift keying with direct detection for free-space optical communication,” J. Opt. Commun. Netw. 1(4), 307–312 (2009).

M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, and H. Kunimori, “Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space,” Opt. Express 17(25), 22333–22340 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (1)

2005 (2)

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
[Crossref] [PubMed]

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep. 2(4), 345–396 (2005).
[Crossref]

2002 (2)

2001 (1)

M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

1994 (1)

D. F. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. 11(5), 1641–1643 (1994).
[Crossref]

1976 (1)

M. L. Wesely, “The combined effect of temperature and humidity fluctuations on refractive index,” J. Appl. Meteorol. 15(1), 43–49 (1976).
[Crossref]

1972 (1)

1969 (1)

1967 (1)

J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of -arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antenn. Propag. 15(3), 416–421 (1967).
[Crossref]

Ahmed, N.

Alavinejad, M.

F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
[Crossref]

Alferness, R.

Al-Habash, M.

M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Andrews, C.

M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Andrews, L.

Birnbaum, K. M.

Chan, V.

Chen, X.

X. Ji and X. Chen, “Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence,” Opt. Laser Technol. 41(2), 165–171 (2009).
[Crossref]

Cheng, J.

Clifford, S. F.

J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of -arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antenn. Propag. 15(3), 416–421 (1967).
[Crossref]

Collett, E.

Cvijetic, N.

Dang, A.

Davidson, F. M.

Dolinar, S. J.

Erkmen, B. I.

Farwell, N.

O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284(7), 1740–1746 (2011).
[Crossref]

Ghafary, B.

F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
[Crossref]

Ghassemlooy, Z.

X. Tang, Z. Xu, and Z. Ghassemlooy, “Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel,” J. Lightwave Technol. 31(20), 3221–3228 (2013).
[Crossref]

Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “Experimental investigation of polarization modulated free space optical communication with direct detection in a turbulence channel,” IET Commun. 6(11), 1489–1494 (2012).
[Crossref]

Guo, H.

G. Xie, F. Wang, A. Dang, and H. Guo, “A novel polarization-multiplexing system for free-space optical links,” Photon. Technol. Lett. 23(20), 1484–1486 (2011).
[Crossref]

Y. Han, A. Dang, Y. Ren, J. Tang, and H. Guo, “Theoretical and experimental studies of turbo product code with time diversity in free space optical communication,” Opt. Express 18(26), 26978–26988 (2010).
[Crossref] [PubMed]

Han, Y.

Höhn, D. H.

Holzman, J. F.

Hranilovic, S.

Huang, H.

Huang, Y.

James, D. F.

D. F. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. 11(5), 1641–1643 (1994).
[Crossref]

Ji, G.

Ji, X.

X. Ji and X. Chen, “Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence,” Opt. Laser Technol. 41(2), 165–171 (2009).
[Crossref]

X. Ji and G. Ji, “Effect of turbulence on the beam quality of apertured partially coherent beams,” J. Opt. Soc. Am. A 25(6), 1246–1252 (2008).
[Crossref] [PubMed]

Jia, J.

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Kashani, F.

F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
[Crossref]

Korotkova, O.

O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284(7), 1740–1746 (2011).
[Crossref]

Koyama, Y.

Kunimori, H.

Lavery, M. P. J.

Li, G.

Liu, C.

Majumdar, A. K.

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep. 2(4), 345–396 (2005).
[Crossref]

Mostafa, A.

Niu, M.

Padgett, M. J.

Phillips, R.

M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Qian, D.

Rajbhandari, S.

Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “Experimental investigation of polarization modulated free space optical communication with direct detection in a turbulence channel,” IET Commun. 6(11), 1489–1494 (2012).
[Crossref]

Recolons, J.

Ren, Y.

Ricklin, J. C.

Rogawski, D.

Shoji, Y.

Song, X.

Strohbehn, J. W.

J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of -arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antenn. Propag. 15(3), 416–421 (1967).
[Crossref]

Sun, Y.

Takayama, Y.

Takenaka, H.

Tang, J.

Tang, X.

X. Tang, Z. Xu, and Z. Ghassemlooy, “Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel,” J. Lightwave Technol. 31(20), 3221–3228 (2013).
[Crossref]

Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “Experimental investigation of polarization modulated free space optical communication with direct detection in a turbulence channel,” IET Commun. 6(11), 1489–1494 (2012).
[Crossref]

Toyoshima, M.

Tur, M.

Vetelino, F. S.

Wang, F.

G. Xie, F. Wang, A. Dang, and H. Guo, “A novel polarization-multiplexing system for free-space optical links,” Photon. Technol. Lett. 23(20), 1484–1486 (2011).
[Crossref]

Wang, J.

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

Wang, T.

Wang, Y.

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

Wesely, M. L.

M. L. Wesely, “The combined effect of temperature and humidity fluctuations on refractive index,” J. Appl. Meteorol. 15(1), 43–49 (1976).
[Crossref]

Willner, A. E.

Willner, M. J.

Xie, G.

Xu, Z.

Yan, Y.

Yao, Y.

Young, C.

Yu, J.

Yue, Y.

Zhang, Y.

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

Zhao, X.

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Antenn. Propag. (1)

J. W. Strohbehn and S. F. Clifford, “Polarization and angle-of -arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antenn. Propag. 15(3), 416–421 (1967).
[Crossref]

IEEE Trans. Commun. (1)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

IET Commun. (1)

Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “Experimental investigation of polarization modulated free space optical communication with direct detection in a turbulence channel,” IET Commun. 6(11), 1489–1494 (2012).
[Crossref]

J. Appl. Meteorol. (1)

M. L. Wesely, “The combined effect of temperature and humidity fluctuations on refractive index,” J. Appl. Meteorol. 15(1), 43–49 (1976).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

J. Opt. Fiber Commun. Rep. (1)

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep. 2(4), 345–396 (2005).
[Crossref]

J. Opt. Soc. Am. (2)

E. Collett and R. Alferness, “Depolarization of a laser beam in a turbulent medium,” J. Opt. Soc. Am. 62(4), 529–533 (1972).
[Crossref]

D. F. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. 11(5), 1641–1643 (1994).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

F. Kashani, M. Alavinejad, and B. Ghafary, “Polarization characteristics of aberrated partially coherent flat-topped beam propagating through turbulent atmosphere,” Opt. Commun. 282(20), 4029–4034 (2009).
[Crossref]

O. Korotkova and N. Farwell, “Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284(7), 1740–1746 (2011).
[Crossref]

Opt. Eng. (1)

M. Al-Habash, C. Andrews, and R. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (2)

Y. Wang, Y. Zhang, J. Wang, and J. Jia, “Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence,” Opt. Laser Technol. 43(4), 776–780 (2011).
[Crossref]

X. Ji and X. Chen, “Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence,” Opt. Laser Technol. 41(2), 165–171 (2009).
[Crossref]

Opt. Lett. (1)

Photon. Technol. Lett. (1)

G. Xie, F. Wang, A. Dang, and H. Guo, “A novel polarization-multiplexing system for free-space optical links,” Photon. Technol. Lett. 23(20), 1484–1486 (2011).
[Crossref]

Other (1)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Block diagram of the experimental setup. PC, polarization controller; EDFA, erbium-doped fiber amplifier; BPF, band-pass filter; PBS, polarization beam splitter; DSP, digital signal processing.
Fig. 2
Fig. 2 A measurement sample of (a) polarization angle and (b) light intensity during 120s under different SI’s.
Fig. 3
Fig. 3 Theoretical (The.) and experimental (Exp.) polarization RMS in (a) different SI’s and (b) different distance.
Fig. 4
Fig. 4 Distribution of (a) polarization angle and (b) corresponding normalized intensity under turbulence.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 0 (t)= A 0 exp[j( ω 0 t+ S 0 )] x ^ ,
E=( A x x ^ + A y y ^ )exp{j[ ω 0 t+S(t)]},
M 2 = 4 π L σ n k 2 l 3 ,
σ φ = σ n λ L 1/2 2 π 3/4 l 3/2 .
σ n 2 =0.5 C n 2 λ 1/3 L 1/3 ,
σ φ = ( C n 2 ) 1/2 λ 7/6 L 2/3 2 2 π 3/4 l 3/2 .
2 ψ(r)+ [ ψ(r) ] 2 + k 2 n 2 (r)=0.
ψ 1 =ψ- ψ 0 =ln A A 0 +jφ+j(S S 0 ).
Δ A,S +jφ= 1 4π V exp(jk| r r |) | r r | 2 k 2 n 1 ( r ) u ˜ 0 ( r )d r ,
Δ A,S +jφ= 0 L dz k 2 2π(Lz) exp[ jk (x x ) 2 + (y y ) 2 2(Lz) ] n 1 ( r ) u ˜ 0 ( r )d x d y ,
f Pol (Δφ)= 1 2π σ φ e Δ φ 2 2 σ φ 2 .
I 1 = | E 0 · z ^ | 2 = | A 0 e jkx | 2 = A 0 2 , I 2 = | E 0 · y ^ | 2 =0.
φ= I 2 I 1 .
f GG ( I ^ )= 2 (αβ) α+β 2 Γ(α)Γ(β) I ^ α+β 2 1 K αβ ( 2 αβ I ^ ), I ^ >0, I ^ =1,
S I GG = 1 α + 1 β + 1 αβ .

Metrics