Abstract

We report on a tunable continuous-wave mid-infrared optical parametric oscillator (OPO), which is locked to a fully stabilized near-infrared optical frequency comb using a frequency doubling scheme. The OPO is used for 40 GHz mode-hop-free, frequency-comb-locked scans in the wavelength region between 2.7 and 3.4 μm. We demonstrate the applicability of the method to high-precision cavity-ring-down spectroscopy of nitrous oxide (N2O) and water (H2O) at 2.85 µm and of methane (CH4) at 3.2 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy

Markku Vainio and Juho Karhu
Opt. Express 25(4) 4190-4200 (2017)

High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio
Opt. Express 22(9) 10535-10543 (2014)

Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale
Opt. Express 20(8) 9178-9186 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref] [PubMed]
  2. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  3. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
    [Crossref] [PubMed]
  4. V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
    [Crossref] [PubMed]
  5. P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
    [Crossref]
  6. S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
    [Crossref]
  7. A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  8. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
    [Crossref]
  9. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [Crossref] [PubMed]
  10. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  11. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30(23), 3141–3143 (2005).
    [Crossref] [PubMed]
  12. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett. 30(9), 997–999 (2005).
    [Crossref] [PubMed]
  13. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
    [Crossref] [PubMed]
  14. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
    [Crossref]
  15. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
    [Crossref] [PubMed]
  16. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
    [Crossref] [PubMed]
  17. O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
    [Crossref] [PubMed]
  18. A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett. 37(19), 4083–4085 (2012).
    [Crossref] [PubMed]
  19. K. Knabe, P. A. Williams, F. R. Giorgetta, M. B. Radunsky, C. M. Armacost, S. Crivello, and N. R. Newbury, “Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer,” Opt. Express 21(1), 1020–1029 (2013).
    [Crossref] [PubMed]
  20. M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
    [Crossref] [PubMed]
  21. E. Benkler, F. Rohde, and H. R. Telle, “Endless frequency shifting of optical frequency comb lines,” Opt. Express 21(5), 5793–5802 (2013).
    [Crossref] [PubMed]
  22. T. Fordell, A. E. Wallin, T. Lindvall, M. Vainio, and M. Merimaa, “Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling,” Appl. Opt. 53(31), 7476–7482 (2014).
    [Crossref] [PubMed]
  23. M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008).
    [Crossref] [PubMed]
  24. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27(12), 2687–2699 (2010).
    [Crossref]
  25. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
    [Crossref]
  26. J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
    [Crossref]
  27. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
    [Crossref]
  28. H. I. T. R. A. N. The, 2012 database, URL: http://www.hitran.com/ .
  29. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
    [Crossref]
  30. R. Z. Martínez, M. Metsälä, O. Vaittinen, T. Lantta, and L. Halonen, “Laser-locked, high repetition-rate cavity ringdown spectrometer,” J. Opt. Soc. Am. B 23(4), 727–740 (2006).
    [Crossref]

2014 (2)

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

T. Fordell, A. E. Wallin, T. Lindvall, M. Vainio, and M. Merimaa, “Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling,” Appl. Opt. 53(31), 7476–7482 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (7)

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[Crossref] [PubMed]

A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett. 37(19), 4083–4085 (2012).
[Crossref] [PubMed]

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

2011 (2)

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

2010 (2)

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27(12), 2687–2699 (2010).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

2009 (3)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (1)

2000 (2)

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

Ahtee, V.

Armacost, C. M.

Asvany, O.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
[Crossref] [PubMed]

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Bartalini, S.

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[Crossref] [PubMed]

Benkler, E.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Borri, S.

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[Crossref] [PubMed]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Byer, R. L.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Cancio, P.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Ciurylo, R.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

Crivello, S.

Cygan, A.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

De Natale, P.

De Rosa, M.

De Tommasi, E.

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Domyslawska, J.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Fejer, M. M.

Fermann, M.

Fermann, M. E.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Fordell, T.

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Galli, I.

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[Crossref] [PubMed]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Garliardi, G.

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

Gatti, D.

Gianfrani, L.

Giorgetta, F. R.

Giusfredi, G.

Gohle, C.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Halonen, L.

Hänsch, T. W.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[Crossref] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Harren, F. J.

Hartl, I.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[Crossref] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Hong, F.-L.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Inaba, H.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Jiang, J.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Knabe, K.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Kobayashi, T.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Kovalchuk, E. V.

Krieg, J.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
[Crossref] [PubMed]

Lantta, T.

Leindecker, N.

Leveque, T.

Lindvall, T.

Lisak, D.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[Crossref] [PubMed]

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Malara, P.

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Marandi, A.

Marangoni, M.

Martínez, R. Z.

Maslowski, P.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Mazzotti, D.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Mefford, W.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Merimaa, M.

Metsälä, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

R. Z. Martínez, M. Metsälä, O. Vaittinen, T. Lantta, and L. Halonen, “Laser-locked, high repetition-rate cavity ringdown spectrometer,” J. Opt. Soc. Am. B 23(4), 727–740 (2006).
[Crossref]

Mills, A. A.

Mohr, C.

Mosca, S.

Nakajima, Y.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Nemtchinoy, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Newbury, N. R.

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Nyholm, K.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Peltola, J.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008).
[Crossref] [PubMed]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Persijn, S.

Peters, A.

Phillips, C. R.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Prevedelli, M.

Radunsky, M. B.

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Ricciardi, I.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Rocco, A.

Rohde, F.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Sasada, H.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Schlemmer, S.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
[Crossref] [PubMed]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Schuldt, T.

Schunemann, P. G.

Siltanen, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Slivken, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Takahata, K.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Telle, H. R.

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

Trawinski, R. S.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Udem, T.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Ulvila, V.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Vainio, M.

Vaittinen, O.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Vodopyanov, K. L.

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Wallin, A. E.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Williams, P. A.

Wojtewicz, S.

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Zimmermann, M.

Zondy, J.-J.

Annu Rev Anal Chem (Palo Alto Calif) (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Garliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, and P. De Natale, “Frequency-comb-referenced mid-IR sources for next-generation environmental sensors,” Appl. Phys. B 102(2), 255–269 (2011).
[Crossref]

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Appl. Phys. Lett. (1)

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett. 101(24), 241110 (2012).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinoy, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

S. Wojtewicz, A. Cygan, P. Maslowski, J. Domyslawska, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Spectral line shapes of self-broadened P-branch transitions of oxygen B band,” J. Quant. Spectrosc. Radiat. Transf. 144, 36–48 (2014).
[Crossref]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett. 37(19), 4083–4085 (2012).
[Crossref] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett. 34(17), 2619–2621 (2009).
[Crossref] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[Crossref] [PubMed]

M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[Crossref] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett. 30(9), 997–999 (2005).
[Crossref] [PubMed]

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30(23), 3141–3143 (2005).
[Crossref] [PubMed]

Phys. Rev. A (1)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Phys. Rev. Lett. (1)

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9), 093110 (2012).
[Crossref] [PubMed]

Other (1)

H. I. T. R. A. N. The, 2012 database, URL: http://www.hitran.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The absolute frequency of a mid-infrared beam produced by cw DFG or OPO can be determined by measuring the frequencies of the pump and signal beams with an NIR OFC. These frequencies are measured by counting the beat frequency with the nearest comb tooth. The optical frequency of the mth tooth of the comb is νm = fceo + mfrep, where fceo is the carrier-envelope offset frequency and frep is the repetition rate of the comb laser, both referenced to an atomic clock. The mode number m can be determined, e.g., from a coarse measurement of the respective frequency with a wavelength meter [1]. (b) The new method reported here is based on frequency doubling (second harmonic generation, SHG) of the MIR beam. This significantly simplifies the scanning of the MIR frequency νi while it is locked to the OFC.

Fig. 2
Fig. 2

A schematic picture of the experimental setup. The pump laser beam (λp) is coupled into a four mirror bow-tie OPO cavity. The mirrors are highly reflective for the signal beam (λs). A fraction of the MIR output beam (λi ~3 µm) is directed to a cavity-ring-down setup for sensitive molecular spectroscopy. The absolute frequency of the beam is measured with an NIR frequency comb after frequency doubling in a nonlinear crystal. The same setup can also be used to lock the MIR frequency to the OFC, after which it can be scanned by scanning the OFC. The symbol AOM denotes an acousto-optic modulator used to initiate ring-down events. MgO:PPLN is a nonlinear optical crystal. The symbol PZT denotes a piezoelectric actuator.

Fig. 3
Fig. 3

a) OPO idler frequency jitter as derived from an SHG beat frequency measurement. The OPO is free-running before 0 s and locked to the OFC after 0 s. b) Allan deviation of the OFC-locked OPO frequency calculated from Fig. 3(a).

Fig. 4
Fig. 4

(a) Frequency-doubling efficiency using a 20 mm long MgO:PPLN crystal with optimal focusing of the MIR beam. The curves show the calculated frequency-doubled power as a function of the MIR power, and the dot indicates a measured power. (b) Phase-matching curves at two different MIR wavelengths, 2850 and 3255 nm.

Fig. 5
Fig. 5

(a) A continuous scan of 40 GHz measured with a frequency comb locked OPO. Red line is the least-square Voigt fit to the measured data points (black markers). Below the spectra is the residual of the fitted model. Pressure was 100 mbar. (b) The R44e transition of the ν1 + ν3 band of N2O at the pressure of 100 mbar. Black markers in the spectra present measured data points and the red line presents the least-square Voigt and Galatry fits to them. Below the spectra are the residuals of the fitted models. The nitrous oxide mixing ratio was 5 ppmv ± 1.5%.

Fig. 6
Fig. 6

(a) A part of the spectrum of the R8 transition of the ν3 band of CH4 at the pressure of 50 mbar. (b) A spectrum of a Doppler broadened F1(2) R8 component of CH4 with a Lamb dip at the center of the transition at the pressure of 1 mbar. Red lines are least-square Voigt fits to the measured spectra. Below the spectra are the residuals of the fitted model. The methane mixing ratio was approximately 5 ppmv.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v p = v s + v i

Metrics