Abstract

We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium

Chandra S.R. Nathala, Ali Ajami, Andrey A. Ionin, Sergey I. Kudryashov, Sergey V Makarov, Thomas Ganz, Andreas Assion, and Wolfgang Husinsky
Opt. Express 23(5) 5915-5929 (2015)

Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses

Tianqing Jia, Motoyoshi Baba, Masayuki Suzuki, Rashid A. Ganeev, Hiroto Kuroda, Jianrong Qiu, Xinshun Wang, Ruxin Li, and Zhizhan Xu
Opt. Express 16(3) 1874-1878 (2008)

Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation

Hui Li, Cheng-Yun Zhang, Xian-Feng Li, Jin Xiang, Shao-Long Tie, and Sheng Lan
Opt. Express 23(23) 30118-30126 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  2. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
    [Crossref] [PubMed]
  3. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref] [PubMed]
  4. M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
    [Crossref] [PubMed]
  5. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
    [Crossref] [PubMed]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  7. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
    [Crossref] [PubMed]
  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  9. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [Crossref] [PubMed]
  10. Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
    [Crossref]
  11. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  12. R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
    [Crossref]
  13. X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett. 34(6), 788–790 (2009).
    [Crossref] [PubMed]
  14. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
    [Crossref]
  15. G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
    [Crossref]
  16. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
    [Crossref] [PubMed]
  17. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  18. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  19. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
    [Crossref] [PubMed]
  20. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
    [Crossref] [PubMed]
  21. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
    [Crossref]
  22. X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
    [Crossref] [PubMed]
  23. P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
    [Crossref]
  24. M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
    [Crossref]
  25. L. Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philosoph. Mag. J. Science 47(310), 81–93 (1874).
  26. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  27. M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. 8(4), 633–652 (2014).
    [Crossref]
  28. V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
    [Crossref]
  29. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
    [Crossref]
  30. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
    [Crossref]
  31. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
    [Crossref] [PubMed]

2014 (2)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. 8(4), 633–652 (2014).
[Crossref]

2013 (8)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

2012 (1)

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

2011 (2)

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

2010 (4)

X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
[Crossref] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

2009 (2)

X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett. 34(6), 788–790 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

2008 (3)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

2007 (1)

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

2005 (2)

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (2)

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1874 (1)

L. Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philosoph. Mag. J. Science 47(310), 81–93 (1874).

Anhut, T.

Beresna, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Chen, D.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Cheng, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Choi, H.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Costache, F.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
[Crossref]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Deng, L.

Ding, L.

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

Ding, L. E.

Fan, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Farsari, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Feng, D.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
[Crossref] [PubMed]

Feng, D. H.

Fischer, J.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Fotakis, C.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

He, F.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

He, R.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Hou, S.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Hrelescu, C.

Huang, M.

M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. 8(4), 633–652 (2014).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Huo, Y.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Jacak, J.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

Jia, T.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Jia, T. Q.

Jia, X.

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Johnson, J.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Katzmann, J.

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kazansky, P. G.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Klar, T. A.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

König, K.

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Le Harzic, R.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Liao, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Liu, C.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Liu, J.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Makin, R. S.

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

Makin, V. S.

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

Malinauskas, M.

Mao, S.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Midorikawa, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Miyaji, G.

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

Miyazaki, K.

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

Morris, N.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Pan, J.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Pham, J.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Qiao, L.

Qiu, J.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Qiu, J. R.

Rayleigh, L.

L. Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philosoph. Mag. J. Science 47(310), 81–93 (1874).

Reif, J.

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
[Crossref]

Rekštyte, S.

Riemann, I.

Russo, R.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Sauer, D.

Saykally, R.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Schilcher, K.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Schuck, H.

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Shen, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Song, J.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Sugioka, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett. 38(2), 187–189 (2013).
[Crossref] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, Z.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
[Crossref] [PubMed]

Sun, Z. R.

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Vasic, B.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

Wang, Z. G.

Wegener, M.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Wei, X.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Wiesbauer, M.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

Wollhofen, R.

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref] [PubMed]

Xiong, P.

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
[Crossref] [PubMed]

Xiong, P. X.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, N. S.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Xu, Z.

M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. 8(4), 633–652 (2014).
[Crossref]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

X. Jia, T. Q. Jia, Y. Zhang, P. Xiong, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z. Z.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35(8), 1248–1250 (2010).
[Crossref] [PubMed]

X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett. 34(6), 788–790 (2009).
[Crossref] [PubMed]

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yan, H.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Yang, P.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, S.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Zhang, Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, F. L.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhou, K.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

ACS Nano (2)

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12(5), 323 (2002).
[Crossref]

Adv. Mater. (2)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Miyaji and K. Miyazaki, “Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation,” Appl. Phys. Lett. 103(7), 071910 (2013).
[Crossref]

Appl. Surf. Sci. (1)

F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1), 352–357 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Lab Chip (1)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Laser Photon. Rev. (3)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2(1–2), 26–46 (2008).
[Crossref]

M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. 8(4), 633–652 (2014).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

Laser Phys. (1)

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Nano Lett. (2)

M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, and T. A. Klar, “Nano-anchors with single protein capacity produced with STED lithography,” Nano Lett. 13(11), 5672–5678 (2013).
[Crossref] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

P. Xiong, T. Jia, X. Jia, D. Feng, S. Zhang, L. Ding, Z. Sun, J. Qiu, and Z. Xu, “Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams,” New J. Phys. 13(2), 023044 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Philosoph. Mag. J. Science (1)

L. Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philosoph. Mag. J. Science 47(310), 81–93 (1874).

Phys. Rev. B (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Tech. Phys. Lett. (1)

V. S. Makin, R. S. Makin, A. Y. Vorobyev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the metal-high-power ultrashort-pulsed polarized radiation nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the experimental set-up. HWP: Half wave plate, GP: Glan prism, L1 and L2: Lens with focus length of 400 mm, PH: Pin hole with diameter of 100 μm.
Fig. 2
Fig. 2 (a)-(c): SEM images of nanocracks fabricated by using water immersion objective. The laser fluences are (a) 2.74 J/cm2, (b) 2.64 J/cm2, and (c) 2.54 J/cm2, respectively. (d)-(f): SEM images of nanocracks fabricated by using dry objective with laser fluences of (d) 1.52 J/cm2, (e) 1.44 J/cm2, and (f) 1.36 J/cm2, respectively. The pulse number is 75 in all pictures. The arrow in (a) indicates the laser polarization (E).
Fig. 3
Fig. 3 SEM images of the nanogrooves fabricated when the sample surfaces are at (a) –500 nm, (b) –300 nm, (c) + 300 nm, and (d) + 500 nm, respectively. The laser fluence is of 2.52 J/cm2, and writing speed keeps at 10 μm/s.
Fig. 4
Fig. 4 SEM images of nanogrooves induced by laser with a fluence of 2.56 J/cm2. The writing speeds are (a) 2 μm/s, (b) 6 μm/s, (c) 8 μm/s, (d) 10 μm/s, (e) 12 μm/s, and (f) 13 μm/s, respectively. The laser polarization (E) and writing direction (S) are shown in (a).
Fig. 5
Fig. 5 A parameter space for the formation of nanogrooves: laser fluence (J/cm2) vs. writing speed (μm/s).
Fig. 6
Fig. 6 SEM images of nanocracks induced by 800 nm femtosecond laser. The angles between the writing direction (S) and the laser polarization (E) are (a) 45°, and (b) 0°. The laser fluences are (a) 3.0 J/cm2, and (b) 3.2 J/cm2, and the writing speeds are both at 14 μm/s.
Fig. 7
Fig. 7 (a) SEM images of double-line nanogroove induced by laser with a fluence of 2.64 J/cm2, and (b) single nanogroove for laser fluence of 2.54 J/cm2, (c) double-line grating for laser fluence of 2.61 J/cm2, and (d) grating for laser fluence of 2.52 J/cm2. The laser polarization (E) and writing direction (S) are shown in (a).
Fig. 8
Fig. 8 SEM images of nanogratings for the laser fluence of (a) 2.47 J/cm2, and (b) 2.42 J/cm2, respectively.
Fig. 9
Fig. 9 SEM image of the cross section of nanogratings for the laser fluence of 2.43 J/cm2 and writing speed of 10 μm/s.
Fig. 10
Fig. 10 SEM images of nanorectangles with dimensions of 150 × 250 nm2. The scale bar is 300 nm. The writing directions “X” and “Y” are shown on the right side.
Fig. 11
Fig. 11 SEM images of nanosquares for the laser fluences at the second writing along the Y direction are of 2.23 J/cm2 (a), and 2.16 J/cm2 (b). The scale bars are 300 nm in (a) and (b). The writing directions “X” and “Y” are shown on the right side.
Fig. 12
Fig. 12 (a) SEM images of nanosquares with dimensions of 150 × 150 nm2, and (b) nanorectangles with dimensions of 150 × 250 nm2. The scale bars are 300 nm in (a) and (b). The writing directions “X” and “Y” are shown on the right side.

Tables (2)

Tables Icon

Table 1 Fabrication Conditions of Nanogrooves and Nanogratings in Figs. 7 and 8.

Tables Icon

Table 2 Fabrication Conditions of Nanosquares in Figs. 10, 11, and 12.

Metrics