Abstract

The sensitivity of bimodal waveguides for integrated optical biosensors is compared to single mode waveguides and grating-assisted bimodal interferometers are proposed as improved sensor concept. Grating-assisted bimodal interferometers are an elegant and compact sensor concept, which features easy fabrication and overcomes typical weaknesses of classical Mach-Zehnder interferometers. Long period gratings for mode conversion in the proposed sensor concept have been simulated employing the FDTD method. Such gratings give full control over the power distribution in the waveguides modes, which is not possible with other methods. Designs for three typical material systems are given and fabrication tolerances were investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel bimodal interferometric sensor using subwavelength structures

L. Torrijos-Morán and J. García-Rupérez
Opt. Express 27(6) 8168-8179 (2019)

Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide

Qing Liu, Kyung Woo Kim, Zhonghua Gu, Jack Sheng Kee, and Mi Kyoung Park
Opt. Express 22(23) 27910-27920 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
    [Crossref]
  2. F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
    [Crossref]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  4. R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
    [Crossref]
  5. J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
    [Crossref]
  6. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  7. H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
    [Crossref] [PubMed]
  8. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [Crossref]
  9. J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
    [Crossref]
  10. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
    [Crossref] [PubMed]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  12. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).
  13. R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
    [Crossref]
  14. R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
    [Crossref]
  15. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [Crossref]
  16. B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
    [Crossref]
  17. A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33(6), 596–598 (2008).
    [Crossref] [PubMed]
  18. K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
    [Crossref]
  19. K. Zinoviev, A. B. Gonzalez-Guerrero, C. Domınguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
    [Crossref]
  20. D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
    [Crossref] [PubMed]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. 6(2), 209–220 (1989).
    [Crossref]
  22. Optical Waveguides - From Theory to applied Technologies, edited by M.L. Calvo and V. Lakshminarayanan, (CRC Press: New York, 2007).
  23. K. Zinoviev, L. M. Lechuga, and C. Dominguez, “Silicon nitride bimodal waveguides for high sensitivity biosensors,” in Proc. European Conference on Optical Integration,(Cambridge, UK, 2010), WeP40.
  24. Integrated Photonics, edited by C. Pollock und M. Lipson, (Kluwer Academic publishers: Norwell, MA, 2003).

2012 (1)

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

2011 (3)

K. Zinoviev, A. B. Gonzalez-Guerrero, C. Domınguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).

2010 (2)

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

2009 (2)

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

2008 (4)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33(6), 596–598 (2008).
[Crossref] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

2007 (1)

2006 (2)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

2003 (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

1997 (1)

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

1996 (1)

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

1993 (1)

R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

1989 (2)

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
[Crossref]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. 6(2), 209–220 (1989).
[Crossref]

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).

Anderson, A. S.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Baets, R.

Bailey, R. C.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Bartolozzi, I.

Bienstman, P.

Blanco, F. J.

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

Branch, D. W.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Brener, I.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Brosinger, F.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Bruck, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Cammann, K.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Cheben, P.

Dante, S.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

De Vos, K.

Delâge, A.

Densmore, A.

Dominguez, C.

K. Zinoviev, A. B. Gonzalez-Guerrero, C. Domınguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

K. Zinoviev, L. M. Lechuga, and C. Dominguez, “Silicon nitride bimodal waveguides for high sensitivity biosensors,” in Proc. European Conference on Optical Integration,(Cambridge, UK, 2010), WeP40.

Domínguez, C.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Duval, D.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Ehrfeld, W.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fernández, L. J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Freimuth, H.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Gedig, E.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Gleeson, M.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Gonzalez-Guerrero, A. B.

González-Guerrero, A. B.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Grace, K. M.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Grace, W. K.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Greve, J.

R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Gunn, L. C.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Hainberger, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Hartman, N.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Heideman, R. G.

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

Heidemann, R. G.

R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Iqbal, M.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Jager, E. W. H.

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

Janz, S.

Katerkamp, A.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Kim, J. W.

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

Kim, K. J.

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

Kooyman, R. P. H.

R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

Lacher, M.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Lambeck, P. V.

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

Lämmerhofer, M.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Lamontagne, B.

Lapointe, J.

Lechuga, L. M.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. Zinoviev, A. B. Gonzalez-Guerrero, C. Domınguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

K. Zinoviev, L. M. Lechuga, and C. Dominguez, “Silicon nitride bimodal waveguides for high sensitivity biosensors,” in Proc. European Conference on Optical Integration,(Cambridge, UK, 2010), WeP40.

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Lopinski, G.

Lukosz, W.

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. 6(2), 209–220 (1989).
[Crossref]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
[Crossref]

Martinez, J. S.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Mayora, K.

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

Melnik, E.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Mischki, T.

Monge, R.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Moreno, M.

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

Muellner, P.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

Mukundan, H.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Oh, M. C.

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

Osmond, J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Qavi, A. J.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Sanchez del Rio, J.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

Schacht, E.

Schmid, J. H.

Sepulveda, B.

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Shaw, M. J.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Spener, F.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Swanson, B. I.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Tiefenthaler, K.

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
[Crossref]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. 6(2), 209–220 (1989).
[Crossref]

Tybor, F.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Vawter, G. A.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Veldhuis, G. J.

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

Waldron, P.

Washburn, A. L.

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

Westlake, K. R.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wright, J. B.

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Xu, D. X.

Yi, J. A.

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zinoviev, K.

K. Zinoviev, A. B. Gonzalez-Guerrero, C. Domınguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

K. Zinoviev, L. M. Lechuga, and C. Dominguez, “Silicon nitride bimodal waveguides for high sensitivity biosensors,” in Proc. European Conference on Optical Integration,(Cambridge, UK, 2010), WeP40.

Zinoviev, K. E.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rıo, B. Sepulveda, C. Domınguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Anal. Chim. Acta (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

J. W. Kim, K. J. Kim, J. A. Yi, and M. C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 973–980 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

B. Sepulveda, J. Sanchez del Rıo, M. Moreno, F. J. Blanco, K. Mayora, C. Domınguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), 561–566 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. 6(2), 209–220 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 1–25 (2011).

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

R. C. Bailey, A. L. Washburn, A. J. Qavi, M. Iqbal, M. Gleeson, F. Tybor, and L. C. Gunn, “A Robust Silicon Photonic Platform for Multiparameter Biological Analysis,” Proc. SPIE 7220, 72200N (2009).
[Crossref]

J. B. Wright, I. Brener, K. R. Westlake, D. W. Branch, M. J. Shaw, and G. A. Vawter, “A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics,” Proc. SPIE 7605, 76050C (2010).
[Crossref]

Sens. Actuators B Chem. (3)

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997).
[Crossref]

R. G. Heidemann, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993).
[Crossref]

R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sens. Actuators B Chem. 35(1-3), 234–240 (1996).
[Crossref]

Sensors (Basel) (1)

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors (Basel) 9(7), 5783–5809 (2009).
[Crossref] [PubMed]

Other (3)

Optical Waveguides - From Theory to applied Technologies, edited by M.L. Calvo and V. Lakshminarayanan, (CRC Press: New York, 2007).

K. Zinoviev, L. M. Lechuga, and C. Dominguez, “Silicon nitride bimodal waveguides for high sensitivity biosensors,” in Proc. European Conference on Optical Integration,(Cambridge, UK, 2010), WeP40.

Integrated Photonics, edited by C. Pollock und M. Lipson, (Kluwer Academic publishers: Norwell, MA, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Concept of the grating-assisted bimodal interferometer.
Fig. 2
Fig. 2 (a) Schematic of the slab waveguide system used for calculations of waveguide sensitivities. (b) Sensitivities Si for different modes in a silicon waveguide (nwg = 3.48, λ = 1310 nm, TE-polarization) as function of waveguide thickness twg. The arrows in (b) indicate the maximum sensitivities S0,max for single mode waveguides as well as S1-0,max for bimodal waveguides, which is defined in Eq. (2) as difference of the sensitivities of the fundamental and the higher order mode.
Fig. 3
Fig. 3 (a) Comparison of maximum sensitivity for λ = 1310 nm of single mode and bimodal waveguides as function of the refractive index of the waveguide. For each system the optimum waveguide layer thickness as given in (b) was used.
Fig. 4
Fig. 4 Influence of variations in the waveguide thickness on the sensitivity parameters for single mode waveguides (solid lines) and bimodal waveguides (dashed lines) normalized to the maximum sensitivity. Curves for the SOI (blue, λ = 1310 nm), SiN (red, λ = 633 nm) and PI (green, λ = 1310 nm) material system are shown.
Fig. 5
Fig. 5 (a) Fraction of power in fundamental and higher mode that can be excited employing a step in the waveguide thickness for a SiN bimodal waveguide system as given in reference [19]. The inset compares calculated mode profiles of the fundamental mode in a 150 nm thick input waveguide with the higher mode in the 350 nm thick bimodal waveguide (λ = 633 nm). (b) Total power and power in both waveguide modes as function of the LPG length for a bimodal SiN (nwg = 2, λ = 632.8 nm) waveguide system, when launching only the fundamental mode into the LPG (LPG parameters given in Table 1).
Fig. 6
Fig. 6 Spectral characteristics of optimized LPGs for (a) bimodal SOI (nwg = 3.48), (b) bimodal SiN (nwg = 2), and (c) bimodal PI (nwg = 1.65) sensor systems (parameters given in Table 1). The fundamental mode is launched into the LPG. After the LPG, both waveguide modes, i.e., fundamental and first higher carry the same power at the design wavelength.
Fig. 7
Fig. 7 Influence of fabrication errors in (a) waveguide thickness twg and (b) modulation depth e on the performance of optimized LPGs for the three investigated sensor systems. The fundamental mode is launched into the LPGs and the mode power ratio P0/(P0 + P1) after the grating is given for bimodal systems.

Tables (1)

Tables Icon

Table 1 Summary of the simulation parameters and the simulation results for the long period gratings for all three material systems. Silicon dioxide (n = 1.46) was used as substrate in all cases. Additionally, the angle separation Δα of the two modes at the output grating coupler is given, assuming a 45° output angle for the fundamental mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S i = n eff,i t sl ,
S 10 = ( n eff,1 n eff,0 ) t sl = S 1 S 0 ,
Λ= λ n eff,0 n eff,1
P 0 = P in ( 1+sinΔφ ),  P 1 = P in ( 1sinΔφ )

Metrics