Abstract

We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 130  mW of 397.5  nm tunable laser via ring-cavity-enhanced frequency doubling

Yashuai Han, Xin Wen, Jiandong Bai, Baodong Yang, Yanhua Wang, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 31(8) 1942-1947 (2014)

Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region

Wenhai Yang, Yajun Wang, Yaohui Zheng, and Huadong Lu
Opt. Express 23(15) 19624-19633 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
    [Crossref]
  2. N. M. Linke, C. J. Ballance, and D. M. Lucas, “Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+,” Opt. Lett. 38(23), 5087–5089 (2013).
    [Crossref] [PubMed]
  3. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
    [Crossref] [PubMed]
  4. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
    [Crossref] [PubMed]
  5. X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
    [Crossref] [PubMed]
  6. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  7. K. Hayasaka, Y. Zhang, and K. Kasai, “Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser,” Opt. Express 12(15), 3567–3572 (2004).
    [Crossref] [PubMed]
  8. Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
    [Crossref]
  9. Y. S. Han, X. Wen, J. D. Bai, B. D. Yang, Y. H. Wang, J. He, and J. M. Wang, “Generation of 130mW of 397.5nm tunable laser via ring-cavity enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
    [Crossref]
  10. I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, “Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity,” Opt. Lett. 24(17), 1236–1238 (1999).
    [Crossref] [PubMed]
  11. I. Juwiler and A. Arie, “Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity,” Appl. Opt. 42(36), 7163–7169 (2003).
    [Crossref] [PubMed]
  12. S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett. 36(17), 3467–3469 (2011).
    [Crossref] [PubMed]
  13. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, “1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser,” Opt. Lett. 21(24), 1999–2001 (1996).
    [Crossref] [PubMed]
  14. X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4.,” Opt. Express 21(22), 25907–25911 (2013).
    [Crossref] [PubMed]
  15. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  16. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18(15), 1208–1210 (1993).
    [Crossref] [PubMed]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  18. R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
    [Crossref]
  19. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
    [Crossref]
  20. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
    [Crossref] [PubMed]
  21. G. K. Samanta, S. C. Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4.,” Opt. Lett. 33(24), 2955–2957 (2008).
    [Crossref] [PubMed]
  22. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
    [Crossref]
  23. R. Paschotta, P. Kȕrz, R. Heuking, S. Schiller, and J. Mlynek, “82% Efficient continuous-wave frequency doubling of 1.06 µm with a monolithic MgO:LiMbO3 resonator,” Opt. Lett. 19, 1325–1327 (1994).
  24. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
    [Crossref]

2014 (1)

2013 (3)

2012 (1)

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (2)

F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
[Crossref]

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

2005 (1)

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

2004 (1)

2003 (1)

1999 (1)

1996 (1)

1994 (1)

1993 (1)

1991 (1)

1989 (1)

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1971 (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Arie, A.

Ast, S.

Bai, J. D.

Ballance, C. J.

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Bode, M.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Bramati, A.

Canalias, C.

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Chen, X. Z.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Chiummo, A.

Deng, X.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Duan, Z. Y.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Eberle, T.

Ebrahim-Zadeh, M.

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Fan, B.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Freitag, I.

Fukui, T.

Gao, K. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Giacobino, E.

Guan, H.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Guo, B.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Han, Y. S.

Hänsch, T. W.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

Hayasaka, K.

He, J.

Heuking, R.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huang, G. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Huang, X. R.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Jia, X. J.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Juwiler, I.

K?rz, P.

Kallenbach, R.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

Kasai, K.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kubota, S.

Kumar, S. C.

Lastzka, N.

Laurell, F.

Lemonde, P.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Li, G.

Linke, N. M.

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Lucas, D. M.

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Masuda, H.

Mathew, M.

Mehmet, M.

Mitchell, M. W.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Mlynek, J.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nia, R. M.

Paschotta, R.

Pasiskevicius, V.

Peng, K. C.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Polzik, E. S.

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Qi, X. H.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Rosenman, G.

Samanta, G. K.

Sandberg, J.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

Schiller, S.

Schnabel, R.

Schneider, K.

Schönbeck, A.

Shu, H. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

Skliar, A.

Steinlechner, J.

Steinlechner, S.

Su, X. L.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Targat, R. L.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Villa, F.

Wang, H.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Wang, J. M.

Wang, Y. H.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wen, X.

Wiechmann, W.

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Xie, C. D.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Yan, Z. H.

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Yang, B. D.

Yang, S. F.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Zhai, Y. Y.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Zhang, J.

Zhang, T. C.

Zhang, Y.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

K. Hayasaka, Y. Zhang, and K. Kasai, “Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser,” Opt. Express 12(15), 3567–3572 (2004).
[Crossref] [PubMed]

Zhang, Y. C.

Zhou, X. J.

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

Zimmermann, C.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

Zondy, J.-J.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Chin. Phys. Lett. (1)

Y. Y. Zhai, B. Fan, S. F. Yang, Y. Zhang, X. H. Qi, X. J. Zhou, and X. Z. Chen, “A tunable blue light source with narrow linewidth for cold atom experiments,” Chin. Phys. Lett. 30(4), 044209 (2013).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabalization of the 397nm and 866nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274(1), 182–186 (2007).
[Crossref]

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-hermanic generation in β-barium-borate,” Opt. Commun. 71(3-4), 229–234 (1989).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18(15), 1208–1210 (1993).
[Crossref] [PubMed]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
[Crossref] [PubMed]

G. K. Samanta, S. C. Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4.,” Opt. Lett. 33(24), 2955–2957 (2008).
[Crossref] [PubMed]

N. M. Linke, C. J. Ballance, and D. M. Lucas, “Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+,” Opt. Lett. 38(23), 5087–5089 (2013).
[Crossref] [PubMed]

I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, “Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity,” Opt. Lett. 24(17), 1236–1238 (1999).
[Crossref] [PubMed]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett. 36(17), 3467–3469 (2011).
[Crossref] [PubMed]

K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, “1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser,” Opt. Lett. 21(24), 1999–2001 (1996).
[Crossref] [PubMed]

R. Paschotta, P. Kȕrz, R. Heuking, S. Schiller, and J. Mlynek, “82% Efficient continuous-wave frequency doubling of 1.06 µm with a monolithic MgO:LiMbO3 resonator,” Opt. Lett. 19, 1325–1327 (1994).

Phys. Rev. Lett. (4)

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Genetation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the frequency doubling system. DBR: 795nm distributed- Bragg-reflector (DBR)-type diode laser; APP: anamorphic prism pair; ISO: optical isolator; EOM: phase-type electro-optical modulator; PZT: piezoelectric transducer; DM: dichroic mirror; PD: photo-diode. (a) The semi-monolithic cavity; (b) The bow-tie four-mirror ring cavity.
Fig. 2
Fig. 2 The temperature tuning curves of the PPKTP crystals for single-pass frequency doubling from 795 nm to 397.5 nm. (a) 10mm-long PPKTP crystal; (b) 20mm-long PPKTP crystal.
Fig. 3
Fig. 3 (a) The SH power versus the mode-matched fundamental power. (b) The conversion efficiency versus the mode-matched fundamental power.
Fig. 4
Fig. 4 Power stability of the SH output over 30min. The RMS fluctuations of the SC and the BRC are 1.9% and 0.7% respectively under the incident FW power of around 110mW.
Fig. 5
Fig. 5 The measured beam quality M2 of the output UV coherent radiation. The blue squares are for the x axis, and the grey dots are for the y axis. The inserts are the beam profile of the SH. (a) is the result of SC, (b) is the result of BRC.
Fig. 6
Fig. 6 The resonant signals of the cavities. The temperature is tuned away from the phase match condition. (a): The semi-monolithic cavity; (b): The bow-tie four-mirror ring cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η [2 1 T 1 (2LΓ η P 1 E NL )] 2 4 T 1 E NL P 1 =0

Metrics