Abstract

We report an improvement of three orders of magnitude in the spectral resolution of a recently proposed single-comb terahertz spectroscopy [Opt. Lett. 39, 5669 (2014)]. The improvement is achieved by using a femtosecond optical pulse train with a tunable repetition rate. Terahertz comb with tunable spectral line spacing generated by the train is detected via nonlinear mixing with a harmonic of a CW signal from a microwave frequency synthesizer. By applying this technique to the low-pressure gas spectroscopy, we achieved a 100 kHz spectral resolution in measuring separate absorption lines of the rotational manifold of fluoroform (CF3H).

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto
Opt. Lett. 30(17) 2323-2325 (2005)

2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source

Andriy A. Danylov, Alexander R. Light, Jerry Waldman, Neal R. Erickson, Xifeng Qian, and William D. Goodhue
Opt. Express 20(25) 27908-27914 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [Crossref]
  2. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
    [Crossref] [PubMed]
  3. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
    [Crossref] [PubMed]
  4. Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
    [Crossref]
  5. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
    [Crossref]
  6. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
    [Crossref] [PubMed]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  8. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  9. T. W. Hansch and N. Picque, “Laser spectroscopy and frequency combs,” J. Phys. Conf. Ser. 467, 012001 (2013).
    [Crossref]
  10. D. G. Pavelyev, A. S. Skryl, and M. I. Bakunov, “High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb,” Opt. Lett. 39(19), 5669–5672 (2014).
    [Crossref] [PubMed]
  11. D. R. Grischkowsky, “THz photonics: The synergy of ultrafast optics, electronics, microwaves and quasi-optics,” Terahertz Sci. Technol. 5, 48–66 (2012).
  12. D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
    [Crossref]
  13. D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, A. E. Zhukov, F. Lewen, C. Endres, A. M. Baryshev, P. Khosropanah, W. Zhang, K. F. Renk, B. I. Stahl, A. Semenov, and H.-W. Huebers,W. Wild, ed., “Short GaAs/AlAs superlattices as THz radiation sources,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, W. Wild, ed. (Groningen, the Netherlands, 2008), pp. 319–328.
  14. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
    [Crossref]
  15. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).
  16. R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
    [Crossref]
  17. G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
    [Crossref]
  18. M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
    [Crossref]
  19. D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
    [Crossref]
  20. K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
    [Crossref]
  21. M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).
  22. D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
    [Crossref]

2014 (2)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

D. G. Pavelyev, A. S. Skryl, and M. I. Bakunov, “High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb,” Opt. Lett. 39(19), 5669–5672 (2014).
[Crossref] [PubMed]

2013 (2)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. W. Hansch and N. Picque, “Laser spectroscopy and frequency combs,” J. Phys. Conf. Ser. 467, 012001 (2013).
[Crossref]

2012 (2)

D. R. Grischkowsky, “THz photonics: The synergy of ultrafast optics, electronics, microwaves and quasi-optics,” Terahertz Sci. Technol. 5, 48–66 (2012).

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

2011 (1)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

2010 (2)

2008 (1)

2006 (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
[Crossref]

2004 (2)

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

1994 (4)

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

1984 (1)

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
[Crossref]

Ahn, J.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
[Crossref]

Antonov, A. V.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Bakunov, M. I.

Bellini, M.

M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Bocquet, R.

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

Boucher, D.

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

Burie, J.

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

Cazzoli, G.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Chen, W.

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

Chen, W. D.

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

Cludi, L.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Cotti, G.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

De Natale, P.

M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).

Demaison, J.

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

Demarina, N. V.

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Denatale, P.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Dore, L.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Esposti, C. D.

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

Evenson, K. M.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
[Crossref]

Gavrilenko, V. I.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Gohle, C.

Grischkowsky, D. R.

D. R. Grischkowsky, “THz photonics: The synergy of ultrafast optics, electronics, microwaves and quasi-optics,” Terahertz Sci. Technol. 5, 48–66 (2012).

Hansch, T. W.

T. W. Hansch and N. Picque, “Laser spectroscopy and frequency combs,” J. Phys. Conf. Ser. 467, 012001 (2013).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Holzwarth, R.

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Ihara, A.

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

Inguscio, M.

M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).

Ivanov, A. S.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Jennings, D. A.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
[Crossref]

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Kawamoto, K.

Keilmann, F.

Kim, Y.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
[Crossref]

Koshelev, M. A.

M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
[Crossref]

Koshurinov, Y. I.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Minoshima, K.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

Mori, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Nakamura, R.

Nose, M.

Panin, A. N.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Papousek, D.

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

Pavel’ev, D. G.

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Paveliev, D. G.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Pavelyev, D. G.

Petersen, F. R.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
[Crossref]

Picque, N.

T. W. Hansch and N. Picque, “Laser spectroscopy and frequency combs,” J. Phys. Conf. Ser. 467, 012001 (2013).
[Crossref]

Rogalski, A.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Semenova, E. S.

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Sizov, F.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Skryl, A. S.

Takahashi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Tonkov, M. V.

M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
[Crossref]

Tretyakov, M. Y.

M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Ustinov, V. M.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Vasil’ev, A. P.

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Vax, V. L.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Wlodarczak, G.

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

Yasui, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yee, D.-S.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
[Crossref]

Yi, M.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
[Crossref]

Yokoyama, S.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35(10), 1689–1691 (2010).
[Crossref] [PubMed]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yoshimura, M.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

Zhukov, A. E.

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Appl. Phys. Lett. (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44(6), 576–578 (1984).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. Terahertz Sci. Technol. 3(3), 322–330 (2013).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56(11), 255–261 (2010).
[Crossref]

J. Mol. Spectrosc. (2)

R. Bocquet, D. Boucher, W. D. Chen, D. Papousek, G. Wlodarczak, and J. Demaison, “The submillimeter-wave rotational spectrum of fluoroform: Analysis of the K = 3 line doubling,” J. Mol. Spectrosc. 163(1), 291–299 (1994).
[Crossref]

G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. Denatale, “The rotational spectrum of CHF3 in the submillimeter-wave and far-infrared region: Observation of the K = 3 line splitting,” J. Mol. Spectrosc. 163(2), 521–528 (1994).
[Crossref]

J. Phys. Conf. Ser. (1)

T. W. Hansch and N. Picque, “Laser spectroscopy and frequency combs,” J. Phys. Conf. Ser. 467, 012001 (2013).
[Crossref]

J. Phys. III France (1)

D. Boucher, R. Bocquet, J. Burie, and W. Chen, “A far-infrared heterodyne sidebands spectrometer,” J. Phys. III France 4(8), 1467–1480 (1994).
[Crossref]

Laser Phys. (1)

M. Bellini, P. De Natale, and M. Inguscio, “Progress in far-infrared precision spectroscopy,” Laser Phys. 4, 408–411 (1994).

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

M. Y. Tretyakov, M. A. Koshelev, and M. V. Tonkov, “Low rotational transitions of the CF3H molecule: The pressure-induced shift and broadening,” Opt. Spectrosc. 100(5), 689–696 (2006).
[Crossref]

Opto-Electron. Rev. (1)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19(3), 346–404 (2011).
[Crossref]

Phys. Semicond. Devices (1)

D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, A. N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, “Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range,” Phys. Semicond. Devices 46(1), 121–125 (2012).
[Crossref]

Sci Rep (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci Rep 4, 3816 (2014).
[Crossref] [PubMed]

Semiconductors (1)

D. G. Pavel’ev, N. V. Demarina, Y. I. Koshurinov, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov, and V. M. Ustinov, “Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region,” Semiconductors 38(9), 1105–1110 (2004).
[Crossref]

Terahertz Sci. Technol. (1)

D. R. Grischkowsky, “THz photonics: The synergy of ultrafast optics, electronics, microwaves and quasi-optics,” Terahertz Sci. Technol. 5, 48–66 (2012).

Other (2)

D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, A. E. Zhukov, F. Lewen, C. Endres, A. M. Baryshev, P. Khosropanah, W. Zhang, K. F. Renk, B. I. Stahl, A. Semenov, and H.-W. Huebers,W. Wild, ed., “Short GaAs/AlAs superlattices as THz radiation sources,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, W. Wild, ed. (Groningen, the Netherlands, 2008), pp. 319–328.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 a) Terahertz comb (cyan) and harmonics of the CW signal (red). b) Enlarged part of (a). The comb components after tuning are shown in dashed lines. c) RF comb with two sets of components. Amplitude Ab of the component at fb changes with tuning fr and fs.
Fig. 3
Fig. 3 Transmission spectrum of CF3H at 100 mTorr near 289.7 GHz: a) theoretical and b) experimental. In (b), vertical dashed lines show the theoretical frequencies from (a).
Fig. 4
Fig. 4 The spectral line with K = 6 of CF3H at 120 mTorr.

Metrics