Abstract

A miniature MEMS switch is designed, fabricated, and incorporated in a reconfigurable metallic mesh filter for broadband terahertz modulation. The mechanical, electrical, and geometrical properties of the MEMS switch are set to enable broadband terahertz modulation with relatively low modulation voltage, high modulation speed, and high device reliability. The implemented miniature MEMS switch exhibits an actuation voltage of 30 V, a fundamental mechanical resonance frequency of 272 kHz, and an actuation time of 1.23 μs, enabling terahertz modulation with a record high modulation depth of more than 70% over a terahertz band of 0.1-1.5 THz, with a modulation voltage of 30 V and modulation speeds exceeding 20 kHz.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
MEMS reconfigurable metamaterial for terahertz switchable filter and modulator

Zhengli Han, Kenta Kohno, Hiroyuki Fujita, Kazuhiko Hirakawa, and Hiroshi Toshiyoshi
Opt. Express 22(18) 21326-21339 (2014)

A MEMS light modulator based on diffractive nanohole gratings

Jack L. Skinner, A. Alec Talin, and David A. Horsley
Opt. Express 16(6) 3701-3711 (2008)

Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials

Fangrong Hu, Yixing Fan, Xiaowen Zhang, Wenying Jiang, Yuanzhi Chen, Peng Li, Xianhua Yin, and Wentao Zhang
Opt. Lett. 43(1) 17-20 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. L. Chau and K. D. Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Trans. Electron. Dev. 35(12), 2355–2362 (1988).
    [Crossref]
  2. S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).
  3. F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” J. Microelectromech Syst. 10, 169–179 (2001).
  4. Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
    [Crossref]
  5. R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).
  6. M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
    [Crossref]
  7. G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
    [Crossref]
  8. T. Debogovic and J. Perruisseau-Carrier, “MEMS-reconfigurable metamaterials and antenna applications,” Int. J. Antennas Propag. 2014, 138138 (2014).
    [Crossref]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  10. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  11. M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
    [Crossref]
  12. G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
    [Crossref]
  13. A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [Crossref]
  14. W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
    [Crossref]
  15. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17(9), 688–690 (1992).
    [Crossref] [PubMed]
  16. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
    [Crossref]
  17. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
    [Crossref]
  18. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref] [PubMed]
  19. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
    [Crossref]
  20. H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
    [Crossref]
  21. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
    [Crossref]
  22. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
    [Crossref] [PubMed]
  23. C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
    [Crossref] [PubMed]
  24. M. Jarrahi, “Broadband terahertz modulators based on reconfigurable metamaterials and their potential application in terahertz imaging,” Proc. Int. Symp. Electromagnetic Theory, Berlin, Germany, pp 640–642 (2010).
    [Crossref]
  25. S. Zarei and M. Jarrahi, “Broadband terahertz modulation based on reconfigurable metallic slits,” Proc. IEEE Photon. Soc. Winter Topicals, Majorca, Spain, pp 30–31 (2010).
    [Crossref]
  26. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, 1951).
  27. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
    [Crossref]
  28. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
    [Crossref] [PubMed]
  29. B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
    [Crossref]
  30. R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
    [Crossref]
  31. R. Maboudian and R. T. Howe, “Critical review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B 15(1), 1–20 (1997).
    [Crossref]
  32. G. M. Rebeiz, RF MEMS: Theory, Design and Technology (Wiley, 2003).
  33. R. J. Roark and W. C. Young, Formulas for Stress and Strain (McGraw-Hill, 1975).
  34. Coventor Inc, Coventorware ( www.coventor.com )
  35. C. D. Patel and G. M. Rebeiz, “RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity,” IEEE Trans. Microw. Theory Tech. 59(5), 1230–1237 (2011).
    [Crossref]
  36. N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
    [Crossref]
  37. B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
    [Crossref]
  38. S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).
  39. J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS Publishing Company, 1997).
  40. L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” Proc. IEEE Int. Conf. Semiconductor Electronics, pp 233–238 (2002).
  41. J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
    [Crossref]
  42. P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst. 6(2), 107–118 (1997).
    [Crossref]

2014 (2)

T. Debogovic and J. Perruisseau-Carrier, “MEMS-reconfigurable metamaterials and antenna applications,” Int. J. Antennas Propag. 2014, 138138 (2014).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

2011 (7)

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
[Crossref] [PubMed]

C. D. Patel and G. M. Rebeiz, “RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity,” IEEE Trans. Microw. Theory Tech. 59(5), 1230–1237 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2009 (2)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

2008 (5)

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
[Crossref]

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
[Crossref]

2007 (1)

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

2006 (1)

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

2004 (3)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

2002 (1)

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

2001 (2)

F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” J. Microelectromech Syst. 10, 169–179 (2001).

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

2000 (1)

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

1998 (1)

N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[Crossref]

1997 (2)

P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst. 6(2), 107–118 (1997).
[Crossref]

R. Maboudian and R. T. Howe, “Critical review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B 15(1), 1–20 (1997).
[Crossref]

1992 (2)

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17(9), 688–690 (1992).
[Crossref] [PubMed]

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

1990 (1)

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

1988 (1)

H. L. Chau and K. D. Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Trans. Electron. Dev. 35(12), 2355–2362 (1988).
[Crossref]

1983 (1)

W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
[Crossref]

Anderson, R. H.

W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
[Crossref]

André, N.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Ayazi, F.

F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” J. Microelectromech Syst. 10, 169–179 (2001).

Azad, A. K.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Barker, N. S.

N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[Crossref]

Bauer, J. M.

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

Beebe, D. J.

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
[Crossref] [PubMed]

Blondy, P.

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Bloom, D. M.

Bourouina, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Brown, A.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Catherinot, A.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Champeaux, C.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Chang, S. C.

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

Chang-Hasnain, C. J.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Chatras, M.

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

Chau, H. L.

H. L. Chau and K. D. Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Trans. Electron. Dev. 35(12), 2355–2362 (1988).
[Crossref]

Chen, H. T.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

Cheng, K. B.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Cibert, C.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Conant, R. A.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Crunteanu, A.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Debogovic, T.

T. Debogovic and J. Perruisseau-Carrier, “MEMS-reconfigurable metamaterials and antenna applications,” Int. J. Antennas Propag. 2014, 138138 (2014).
[Crossref]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Dumas-Bouchiat, F.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

El-Tanani, M.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Entesari, K.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Flandre, D.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Goussetis, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Granet, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Grichener, A.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Guo, H. C.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Hagelin, P. M.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Hart, M.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Hicks, D. B.

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

Howe, R. T.

R. Maboudian and R. T. Howe, “Critical review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B 15(1), 1–20 (1997).
[Crossref]

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

Huang, M. C. Y.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Iker, F.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Jarrahi, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
[Crossref] [PubMed]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

M. Jarrahi, “Broadband terahertz modulators based on reconfigurable metamaterials and their potential application in terahertz imaging,” Proc. Int. Symp. Electromagnetic Theory, Berlin, Germany, pp 640–642 (2010).
[Crossref]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Jorez, S.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kassim, N. M.

L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” Proc. IEEE Int. Conf. Semiconductor Electronics, pp 233–238 (2002).

Krishnamoorthy, U.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Kwong, D. L.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Laconte, J.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Lacroix, B.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Lakshminarayanan, B.

B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
[Crossref]

Lammel, G.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

Lau, K. Y.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Leaird, D. E.

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Lee, T. H.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
[Crossref]

Li, C. H.

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

Li, S.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Lioubtchenko, D.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, A. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Lo, G. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Luukkonen, O.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Maboudian, R.

R. Maboudian and R. T. Howe, “Critical review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B 15(1), 1–20 (1997).
[Crossref]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Mercier, D.

B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
[Crossref]

Miller, D. A. B.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Mohammad, A. B.

L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” Proc. IEEE Int. Conf. Semiconductor Electronics, pp 233–238 (2002).

Moore, J.

Moore, J. S.

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

Muller, R. S.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Najafi, K.

F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” J. Microelectromech Syst. 10, 169–179 (2001).

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

Osterberg, P. M.

P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst. 6(2), 107–118 (1997).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Pardoen, T.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Park, S.-J.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Patel, C. D.

C. D. Patel and G. M. Rebeiz, “RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity,” IEEE Trans. Microw. Theory Tech. 59(5), 1230–1237 (2011).
[Crossref]

Patel, J. S.

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Pease, R. F. W.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

Perruisseau-Carrier, J.

T. Debogovic and J. Perruisseau-Carrier, “MEMS-reconfigurable metamaterials and antenna applications,” Int. J. Antennas Propag. 2014, 138138 (2014).
[Crossref]

Pesala, B.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Pisano, A. P.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Pothier, A.

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Proost, J.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Psaltis, D.

W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
[Crossref]

Putty, M. W.

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

Räisänen, A. V.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Raskin, J. P.

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Rebeiz, G. M.

C. D. Patel and G. M. Rebeiz, “RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity,” IEEE Trans. Microw. Theory Tech. 59(5), 1230–1237 (2011).
[Crossref]

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
[Crossref]

N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[Crossref]

Reines, I.

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

Renaud, P.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

Ross, W. E.

W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Sandejas, F. S. A.

Schiesser, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

Schweizer, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

Senturia, S. D.

P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst. 6(2), 107–118 (1997).
[Crossref]

Simovski, C.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Solgaard, O.

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17(9), 688–690 (1992).
[Crossref] [PubMed]

Stefanini, R.

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Taylor, A.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

Teng, J. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Tretyakov, S. A.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Tsai, D. P.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Unlu, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wei, L. C.

L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” Proc. IEEE Int. Conf. Semiconductor Electronics, pp 233–238 (2002).

Wiener, A. M.

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Wise, K. D.

H. L. Chau and K. D. Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Trans. Electron. Dev. 35(12), 2355–2362 (1988).
[Crossref]

Wullert, J. R.

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Yang, S.-H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, Q.

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Zhang, X. A.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Zhou, Y.

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

Zhu, W. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[Crossref]

Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78(17), 2589–2591 (2001).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased-array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

IEEE Microw. Mag. (1)

G. M. Rebeiz, K. Entesari, I. Reines, S.-J. Park, M. El-Tanani, A. Grichener, and A. Brown, “Tuning in to RF MEMS,” IEEE Microw. Mag. 10(6), 55–72 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
[Crossref]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling wave Mach-Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett. 20(7), 517–519 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

IEEE Trans. Electron. Dev. (1)

H. L. Chau and K. D. Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Trans. Electron. Dev. 35(12), 2355–2362 (1988).
[Crossref]

IEEE Trans. Microw. Theory Tech. (4)

B. Lakshminarayanan, D. Mercier, and G. M. Rebeiz, “High-reliability miniature RF-MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 56(4), 971–981 (2008).
[Crossref]

C. D. Patel and G. M. Rebeiz, “RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity,” IEEE Trans. Microw. Theory Tech. 59(5), 1230–1237 (2011).
[Crossref]

N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[Crossref]

B. Lacroix, A. Pothier, A. Crunteanu, C. Cibert, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, and P. Blondy, “Sub-microsecond RF MEMS switched capacitors,” IEEE Trans. Microw. Theory Tech. 55(6), 1314–1321 (2007).
[Crossref]

Int. J. Antennas Propag. (1)

T. Debogovic and J. Perruisseau-Carrier, “MEMS-reconfigurable metamaterials and antenna applications,” Int. J. Antennas Propag. 2014, 138138 (2014).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. Terahertz Waves 32(5), 580–595 (2011).
[Crossref]

J. Microelectromech Syst. (1)

F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” J. Microelectromech Syst. 10, 169–179 (2001).

J. Microelectromech. Syst. (3)

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[Crossref]

R. Stefanini, M. Chatras, P. Blondy, and G. M. Rebeiz, “Miniature MEMS switches for RF applications,” J. Microelectromech. Syst. 20(6), 1324–1335 (2011).
[Crossref]

P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst. 6(2), 107–118 (1997).
[Crossref]

J. Vac. Sci. Technol. B (2)

R. Maboudian and R. T. Howe, “Critical review: Adhesion in surface micromechanical structures,” J. Vac. Sci. Technol. B 15(1), 1–20 (1997).
[Crossref]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” J. Vac. Sci. Technol. B 26(6), 2124–2126 (2008).
[Crossref]

Laser Photon. Rev. (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5(4), 513–533 (2011).
[Crossref]

Microelectron. Eng. (1)

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre, and J. P. Raskin, “Thin films stress extraction using micromachined structures and wafer curvature measurements,” Microelectron. Eng. 76(1-4), 219–226 (2004).
[Crossref]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. A. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

W. E. Ross, D. Psaltis, and R. H. Anderson, “Two-dimensional magneto-optic spatial light modulator for signal processing,” Opt. Eng. 22(4), 485–490 (1983).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Sensor Actuat. A-Phys. (2)

S. C. Chang, M. W. Putty, D. B. Hicks, C. H. Li, and R. T. Howe, “Resonant-bridge two-axis microaccelerometer,” Sensor Actuat. A-Phys. 21, 342–345 (1990).

R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K. Y. Lau, and R. S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensor Actuat. A-Phys. 83, 291–296 (2000).

Other (9)

M. Jarrahi, “Broadband terahertz modulators based on reconfigurable metamaterials and their potential application in terahertz imaging,” Proc. Int. Symp. Electromagnetic Theory, Berlin, Germany, pp 640–642 (2010).
[Crossref]

S. Zarei and M. Jarrahi, “Broadband terahertz modulation based on reconfigurable metallic slits,” Proc. IEEE Photon. Soc. Winter Topicals, Majorca, Spain, pp 30–31 (2010).
[Crossref]

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, 1951).

G. M. Rebeiz, RF MEMS: Theory, Design and Technology (Wiley, 2003).

R. J. Roark and W. C. Young, Formulas for Stress and Strain (McGraw-Hill, 1975).

Coventor Inc, Coventorware ( www.coventor.com )

S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS Publishing Company, 1997).

L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” Proc. IEEE Int. Conf. Semiconductor Electronics, pp 233–238 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Operation concept of reconfigurable metallic mesh filters for broadband wave modulation by use of (a) two layers of mesh filters with metallic patches, (b) two layers of mesh filters with metallic patches and slits, and (c) two layers of mesh filters with metallic slits.
Fig. 2
Fig. 2 (a) Schematic diagram of the designed reconfigurable metallic mesh filter and (b) the side and top views of the utilized MEMS switch.
Fig. 3
Fig. 3 The one-dimensional mechanical model of the presented MEMS switch.
Fig. 4
Fig. 4 (a) Actuation voltage of the beam as a function of the length of the thin support arms and the length of the thicker center part of the beam, (b) Maximum deflection at the center of the beam as a function of the geometry of the thicker center part of the beam.
Fig. 5
Fig. 5 The Coventorware simulation results for the designed multi-contact MEMS switch with four dimple pairs at 40 V and 92 V are shown in (a) and (b), respectively.
Fig. 6
Fig. 6 Beam deflection at the center of the beam as a function of (a) residual stress in the sputtered gold layer and (b) stress gradient in the electroplated gold layer.
Fig. 7
Fig. 7 Process flow for the fabrication of the MEMS-reconfigurable mesh filter.
Fig. 8
Fig. 8 (a) Microscope image of the fabricated mesh filter, (b) SEM image of the fabricated mesh filter, (c) Cross-section SEM image of the thicker center part of the MEMS switch.
Fig. 9
Fig. 9 (a) The measured surface profile of the fabricated MEMS switch, (b) the three-dimensional surface profile of the fabricated reconfigurable mesh filter.
Fig. 10
Fig. 10 Frequency response of the fabricated MEMS switches.
Fig. 11
Fig. 11 (a) The spectrum of the transmitted terahertz power through the device at 0 V and 30 V, (b) the device modulation depth as a function of modulation speed.

Tables (3)

Tables Icon

Table 1 Estimated actuation voltage for different number of dimple pairs.

Tables Icon

Table 2 The dimensions of the designed fixed-fixed beam, multi-contact MEMS switch according to the geometric parameters shown in Fig. 2(b).

Tables Icon

Table 3 The measured and estimated design parameters of the MEMS switches.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V act = 8k 27 ε 0 A h 1 3
k cg =Ew ( t 1 l 1 ) 3
m e d 2 z d t 2 +b dz dt +kz= F e

Metrics