Abstract

We investigate the phase noise performance of optoelectronic oscillators when the optical energy storage elements are in the following three configurations: a high-Q whispering gallery mode resonator, an optical delay-line and a combination of both elements. The stability properties of these various optical elements are first characterized, and then systematically compared in the optical and in the microwave frequency domains. Subsequently, the spectral purity of the oscillator is theoretically and experimentally examined for each case. When the resonator is used as both delay and filtering element inside the delay-line based oscillator, the generated spurious modes are highly rejected. A spur rejection by more than 53 dB has been demonstrated for the first-neighboring spur.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optoelectronic loop design with 1000 finesse Fabry-Perot etalon

Ibrahim Ozdur, Mehmetcan Akbulut, Nazanin Hoghooghi, Dimitrios Mandridis, Mohammad U. Piracha, and Peter J. Delfyett
Opt. Lett. 35(6) 799-801 (2010)

Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators

Pierre-Henri Merrer, Khaldoun Saleh, Olivier Llopis, Simone Berneschi, Franco Cosi, and Gualtiero Nunzi Conti
Appl. Opt. 51(20) 4742-4748 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
    [Crossref] [PubMed]
  2. R. T. Logan, L. Maleki, and M. Shadaram, “Stabilization of oscillator phase using a fiber-optic delayline,” in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991), pp.508–512.
  3. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  4. X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
    [Crossref]
  5. L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of the IEEE European Frequency and Time Forum (IEEE, 2012), pp. 497–500.
    [Crossref]
  6. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
    [Crossref]
  7. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
    [Crossref] [PubMed]
  8. R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
    [Crossref]
  9. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop optoelectronic oscillators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2003), pp. 405–410.
  10. K. Saleh, O. Llopis, and G. Cibiel, “Optical scattering induced noise in fiber ring resonators and optoelectronic oscillators,” J. Lightwave Technol. 31(9), 1433–1446 (2013).
    [Crossref]
  11. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
    [Crossref] [PubMed]
  12. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
    [Crossref]
  13. A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
    [Crossref]
  14. R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
    [Crossref]
  15. K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).
  16. A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
    [PubMed]
  17. Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier, and P. Feron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
    [Crossref]
  18. E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  19. A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
    [Crossref]
  20. P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51(20), 4742–4748 (2012).
    [Crossref] [PubMed]
  21. D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” IEEE Proc. 54(2), 329–330 (1966).
  22. Y. Takushima and T. Okoshi, “Suppression of stimulated Brillouin scattering using optical isolators,” Electron. Lett. 28(12), 1155–1157 (1992).
    [Crossref]
  23. O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
    [Crossref]
  24. K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
    [Crossref]
  25. A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
    [Crossref]
  26. O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
  27. K. Saleh, Paul Sabatier university, 118 Route de Narbonne, 31062 Toulouse, France, “High spectral purity microwave sources based on optical resonators,” (personal communication, 2012).
  28. Y. Kouomou Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola, and P. Colet, “Dynamic instabilities of microwaves generated with optoelectronic oscillators,” Opt. Lett. 32(17), 2571–2573 (2007).
    [Crossref] [PubMed]
  29. Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
    [Crossref]
  30. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
    [Crossref]

2014 (1)

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

2013 (3)

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

K. Saleh, O. Llopis, and G. Cibiel, “Optical scattering induced noise in fiber ring resonators and optoelectronic oscillators,” J. Lightwave Technol. 31(9), 1433–1446 (2013).
[Crossref]

2012 (2)

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51(20), 4742–4748 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

2008 (3)

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier, and P. Feron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

2007 (2)

2004 (1)

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

2001 (1)

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1994 (1)

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[Crossref]

1992 (1)

Y. Takushima and T. Okoshi, “Suppression of stimulated Brillouin scattering using optical isolators,” Electron. Lett. 28(12), 1155–1157 (1992).
[Crossref]

Adles, E. J.

Balakireva, I.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

Bary, L.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Bendoula, R.

Berneschi, S.

Black, E.

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bouchier, A.

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

Cahill, J.

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

Carter, G. M.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
[Crossref] [PubMed]

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

Chembo, Y. K.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Cibiel, G.

K. Saleh, O. Llopis, and G. Cibiel, “Optical scattering induced noise in fiber ring resonators and optoelectronic oscillators,” J. Lightwave Technol. 31(9), 1433–1446 (2013).
[Crossref]

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
[Crossref]

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

Coillet, A.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Colet, P.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Y. Kouomou Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola, and P. Colet, “Dynamic instabilities of microwaves generated with optoelectronic oscillators,” Opt. Lett. 32(17), 2571–2573 (2007).
[Crossref] [PubMed]

Conti, G. N.

Cosi, F.

Docherty, A.

A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
[Crossref]

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

Dumeige, Y.

Eliyahu, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop optoelectronic oscillators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2003), pp. 405–410.

Feron, P.

Furfaro, L.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

Ghisa, L.

Giordano, V.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Henriet, R.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Horowitz, M.

Ilchenko, V. S.

Jacquot, M.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

Kersalé, Y.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Kouomou Chembo, Y.

Larger, L.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Y. Kouomou Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola, and P. Colet, “Dynamic instabilities of microwaves generated with optoelectronic oscillators,” Opt. Lett. 32(17), 2571–2573 (2007).
[Crossref] [PubMed]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Levy, E. C.

Llopis, O.

K. Saleh, O. Llopis, and G. Cibiel, “Optical scattering induced noise in fiber ring resonators and optoelectronic oscillators,” J. Lightwave Technol. 31(9), 1433–1446 (2013).
[Crossref]

P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51(20), 4742–4748 (2012).
[Crossref] [PubMed]

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
[Crossref]

Logan, R. T.

R. T. Logan, L. Maleki, and M. Shadaram, “Stabilization of oscillator phase using a fiber-optic delayline,” in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991), pp.508–512.

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[Crossref]

L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of the IEEE European Frequency and Time Forum (IEEE, 2012), pp. 497–500.
[Crossref]

R. T. Logan, L. Maleki, and M. Shadaram, “Stabilization of oscillator phase using a fiber-optic delayline,” in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991), pp.508–512.

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop optoelectronic oscillators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2003), pp. 405–410.

Matsko, A. B.

Menyuk, C. R.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
[Crossref] [PubMed]

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
[Crossref]

Merrer, P. H.

P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51(20), 4742–4748 (2012).
[Crossref] [PubMed]

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
[Crossref]

Nguimdo, R. M.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Nguyen, T. K. N.

Okoshi, T.

Y. Takushima and T. Okoshi, “Suppression of stimulated Brillouin scattering using optical isolators,” Electron. Lett. 28(12), 1155–1157 (1992).
[Crossref]

Okusaga, O.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
[Crossref] [PubMed]

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
[Crossref]

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

Phan Huy, K.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

Plana, R.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Régis, M.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Rennane, A.

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

Rubiola, E.

Saleh, K.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

K. Saleh, O. Llopis, and G. Cibiel, “Optical scattering induced noise in fiber ring resonators and optoelectronic oscillators,” J. Lightwave Technol. 31(9), 1433–1446 (2013).
[Crossref]

P. H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Appl. Opt. 51(20), 4742–4748 (2012).
[Crossref] [PubMed]

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
[Crossref]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Salzenstein, P.

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

Savchenkov, A. A.

Seidel, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

Shadaram, M.

R. T. Logan, L. Maleki, and M. Shadaram, “Stabilization of oscillator phase using a fiber-optic delayline,” in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991), pp.508–512.

Takushima, Y.

Y. Takushima and T. Okoshi, “Suppression of stimulated Brillouin scattering using optical isolators,” Electron. Lett. 28(12), 1155–1157 (1992).
[Crossref]

Tavernier, H.

Trebaol, S.

Volyanskiy, K.

K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

Weimin, Z.

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[Crossref]

Zhou, W.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
[Crossref] [PubMed]

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

Am. J. Phys. (1)

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

Y. Takushima and T. Okoshi, “Suppression of stimulated Brillouin scattering using optical isolators,” Electron. Lett. 28(12), 1155–1157 (1992).
[Crossref]

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30(18), 1525–1526 (1994).
[Crossref]

IEEE J. Quantum Electron. (3)

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 44(9), 858–866 (2008).
[Crossref]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron. 45(2), 178–186 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Coillet, R. Henriet, P. Salzenstein, K. Phan Huy, L. Larger, and Y. K. Chembo, “Time-domain dynamics and stability analysis of optoelectronic oscillators based on whispering-gallery mode resonators,” IEEE J. Sel. Top. Quantum Electron. 19(5), 6000112 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

G. Cibiel, M. Régis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersalé, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 33–41 (2004).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Vis. Exp. (1)

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[PubMed]

Nat. Photonics (1)

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

K. Saleh, A. Coillet, R. Henriet, P. Salzenstein, L. Larger, and Y. K. Chembo, “On the metrological performances of optoelectronic oscillators based on whispering gallery mode resonators,” Proc. SPIE 8985, 1–6 (2014).

Other (11)

R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, and Y. K. Chembo, “Experimental characterization of optoelectronic oscillators based on optical mini-resonators,” in Proceedings of the IEEE International Frequency Control Symposium European Frequency and Time Forum (IEEE, 2013), pp.37–39.
[Crossref]

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop optoelectronic oscillators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2003), pp. 405–410.

R. T. Logan, L. Maleki, and M. Shadaram, “Stabilization of oscillator phase using a fiber-optic delayline,” in Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991), pp.508–512.

L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of the IEEE European Frequency and Time Forum (IEEE, 2012), pp. 497–500.
[Crossref]

O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, “Optical scattering induced noise in RF-photonic systems,” in Proceedings of the IEEE International Frequency Control and the European Frequency and Time Forum (IEEE, 2011), pp.1–6.
[Crossref]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–6.
[Crossref]

A. Docherty, C. R. Menyuk, O. Okusaga, and Z. Weimin, “Stimulated Rayleigh scattering and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.
[Crossref]

O. Okusaga, Z. Weimin, J. Cahill, A. Docherty, and C. R. Menyuk, “Fiber-induced degradation in RF-over-fiber links,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp.1–5.

K. Saleh, Paul Sabatier university, 118 Route de Narbonne, 31062 Toulouse, France, “High spectral purity microwave sources based on optical resonators,” (personal communication, 2012).

D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” IEEE Proc. 54(2), 329–330 (1966).

A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2010), pp. 544–548.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical coupling bench using (one or two) combined micrometric-nanometric xyz translation stages (for add-only or add-drop coupling configuration). Two mirrors facing each other and tilted by 45 degrees are used on both sides of the WGMR to get an accurate side view of the microfibers position regarding the WGMR’s rim.
Fig. 2
Fig. 2 Normalized transmission and absorption signals recorded at the photodiode’s output by an oscilloscope: (a) absorption signal showing the possibility of getting more than 90 percent coupling efficiency for some optical modes. (b) Transmission and absorption signals recorded before and after a laser wavelength shift by approximately 50 pm. These measurements show that some optical resonance combs repeat themselves each 50 pm (6.1 GHz). The 25 ms time scale on this graphic represents a 1.6 GHz laser frequency scanning range (visualization window). This is done by calibrating the oscilloscope’s time base and the laser’s scanning speed. The dashed circles indicate the best-critically-coupled mode that has been chosen for the OEO application.
Fig. 3
Fig. 3 PDH loop (in blue) combined to the OEO experimental setup. In red: optical path; in green: RF path; EOM: electro optic modulator; MZM: Mach Zehnder modulator; DL: 4km long delay line; PC: polarization controller; PD1: fast photodiode; PD2: slow photodiode; LPF: low pass filter.
Fig. 4
Fig. 4 S21 transmission coefficient’s magnitude measurements performed on the MgF2 WGMR for different bandwidths and resolutions, after VNA calibration and OEO optoelectronic loop’s gain adjustment: (a) large scan bandwidth measurement and (b) a focus on the mode at 6.07 GHz from the laser carrier.
Fig. 5
Fig. 5 S21 transmission coefficient’s phase measurement performed on the MgF2 WGMR and focused on the phase-to-frequency slope at resonance at 6.07 GHz.
Fig. 6
Fig. 6 S21 transmission coefficient’s measurements performed on the 4km long DL for different bandwidths and resolutions, after VNA calibration and OEO optoelectronic loop’s gain adjustment: (a) large scan bandwidth S21 magnitude measurement and (b) S21 phase measurement focused on the phase-to-frequency slope at a 6.2575 GHz frequency.
Fig. 7
Fig. 7 S21 transmission coefficient’s measurements performed on the DL-WGMR after VNA calibration and laser stabilization onto the WGMR’s selected optical mode: (a) S21 magnitude measurement and (b) S21 phase measurement focused on the phase-to-frequency slope at a 6.069 GHz frequency.
Fig. 8
Fig. 8 OEO’s optical and RF spectra obtained when using the three different optical stability elements: (a, b) when the MgF2 WGMR is used, (c, d) when the 4km long DL is used and (c, d) when the DL-WGMR is used. In (a, e) the optical spectra include Rayleigh scattering spectra generated inside the WGMR (the induced Rayleigh scattering has not been evaluated in the case of the 4km long DL). In (d), multiple acquisitions of the DL based OEO’s RF spectrum taken on a time interval of less than few seconds to witness the rapid evolution and instability of the OEO’s RF spectrum. These acquisitions confirm the presence of numerous spurious modes in the OEO’s spectrum.
Fig. 9
Fig. 9 Comparison of the oscillation RF spectra of three OEOs based each on a different optical stability element: a MgF2 WGMR, a 4km long DL and a DL-WGMR. The spurious modes are highly rejected in the DL-WGMR based OEO thanks to the high selectivity of the MgF2 WGMR as a band-pass optical filter.
Fig. 10
Fig. 10 Comparison of the oscillation phase noise spectra of three OEOs based each on a different optical stability element: a MgF2 WGMR, a 4km long DL and a 4km long DL combined with a MgF2 WGMR. The spurious modes are highly rejected in the DL-WGMR based OEO thanks to the high selectivity of the MgF2 WGMR as a band-pass optical filter.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FSR= c 2π n r r
Q RFWGMR = Q OptWGMR × f RF f Opt
Δφ Δf = 2 Q RF f RF
WFN( f m )=20log( f RF 2 2 Q RF f m ) +10log( NCR )   dBc/Hz
NCR= 2( S Laser + S th + S shot ) i PD 2 m 2
f L = f RF 2 Q RF

Metrics