Abstract

Corrugated metallic surfaces offer means for efficient amplification of fluorescence bioassay signal based on the near field coupling between surface plasmons and fluorophore emitters that are used as labels. This paper discusses the design of such plasmonic structure to enhance the sensitivity of immunoassays with epi-fluorescence readout geometry. In particular, crossed gold grating is theoretically and experimentally investigated for combined increasing of the excitation rate at the fluorophore excitation wavelength and utilizing directional surface plasmon-coupled fluorescence emission. For Alexa Fluor 647 dye, the enhancement factor of around EF = 102 was simulated and experimentally measured. When applied to a sandwich interleukin-6 immunoassay, highly surface-selective enhancement reaching a similar value was observed. Besides increasing the measured fluorescence signal associated with the molecular binding events on a surface by two orders of magnitude, the presented approach enables measuring kinetics of the surface reaction that is otherwise masked by strong background signal originating from bulk solution.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Collective localized surface plasmons for high performance fluorescence biosensing

Martin Bauch and Jakub Dostalek
Opt. Express 21(17) 20470-20483 (2013)

Compact surface plasmon-enhanced fluorescence biochip

Koji Toma, Milan Vala, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek
Opt. Express 21(8) 10121-10132 (2013)

Combined fluorescent and interferometric detection of protein on a BioCD

Xuefeng Wang, Ming Zhao, and D. D. Nolte
Appl. Opt. 47(15) 2779-2789 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
    [Crossref] [PubMed]
  2. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [Crossref]
  3. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
    [Crossref] [PubMed]
  4. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [Crossref] [PubMed]
  5. J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
    [Crossref] [PubMed]
  6. W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
    [Crossref]
  7. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
    [Crossref]
  8. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
    [Crossref]
  9. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
    [Crossref]
  10. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
    [Crossref] [PubMed]
  11. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [Crossref] [PubMed]
  12. P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
    [Crossref] [PubMed]
  13. K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
    [Crossref] [PubMed]
  14. X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
    [Crossref]
  15. K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
    [Crossref]
  16. Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
    [Crossref] [PubMed]
  17. L. Chaiet and F. J. Wolf, “The properties of streptavidin, a biotin-binding protein produced by Streptomycetes,” Arch. Biochem. Biophys. 106, 1–5 (1964).
    [Crossref] [PubMed]
  18. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
    [Crossref] [PubMed]
  19. K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
    [Crossref] [PubMed]
  20. M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
    [Crossref] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]

2014 (2)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (2)

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

2010 (2)

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

2008 (3)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

2007 (1)

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[Crossref]

1991 (1)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

1981 (1)

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[Crossref]

1979 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1964 (1)

L. Chaiet and F. J. Wolf, “The properties of streptavidin, a biotin-binding protein produced by Streptomycetes,” Arch. Biochem. Biophys. 106, 1–5 (1964).
[Crossref] [PubMed]

Acuna, G. P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

Adam, P.

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[Crossref]

Bauch, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
[Crossref] [PubMed]

Bharadwaj, P.

Chaiet, L.

L. Chaiet and F. J. Wolf, “The properties of streptavidin, a biotin-binding protein produced by Streptomycetes,” Arch. Biochem. Biophys. 106, 1–5 (1964).
[Crossref] [PubMed]

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, X. Q.

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Dostalek, J.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
[Crossref] [PubMed]

Dostálek, J.

Eagen, C. F.

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Gervay-Hague, J.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Go, J. G.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Grohmann, D.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Hattori, T.

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

Holzmeister, P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

Homola, J.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kintaka, K.

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[Crossref]

Knoll, W.

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[Crossref]

Kumagai, I.

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

Liu, G.-Y.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Liu, M.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

MacCraith, B. D.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

McDonagh, C.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

Morigaki, K.

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

Nishii, J.

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Nolting, B.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Novotny, L.

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Philpott, M. R.

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[Crossref]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[Crossref]

Swalen, J. D.

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[Crossref]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Tan, Y. H.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Tawa, K.

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Tinnefeld, P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

Toma, K.

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

Trnavsky, M.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

Umetsu, M.

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

Vala, M.

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
[Crossref] [PubMed]

Wolf, F. J.

L. Chaiet and F. J. Wolf, “The properties of streptavidin, a biotin-binding protein produced by Streptomycetes,” Arch. Biochem. Biophys. 106, 1–5 (1964).
[Crossref] [PubMed]

Yuk, J. S.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Zhang, Q.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

ACS Nano (1)

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G.-Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Anal. Chem. (1)

K. Tawa, M. Umetsu, T. Hattori, and I. Kumagai, “Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen,” Anal. Chem. 83(15), 5944–5948 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[Crossref] [PubMed]

Arch. Biochem. Biophys. (1)

L. Chaiet and F. J. Wolf, “The properties of streptavidin, a biotin-binding protein produced by Streptomycetes,” Arch. Biochem. Biophys. 106, 1–5 (1964).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[Crossref] [PubMed]

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6(3), 201–214 (1991).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev. 43(4), 1014–1028 (2014).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

J. Chem. Phys. (1)

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of light from Ag metal gratings coated with dye monolayer assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

K. Tawa, X. Q. Cui, K. Kintaka, J. Nishii, and K. Morigaki, “Sensitive bioimaging in microfluidic channels on the plasmonic substrate: Application of an enhanced fluorescence based on the reverse coupling mode,” J. Photochem. Photobiol. Chem. 221(2-3), 261–267 (2011).
[Crossref]

Opt. Commun. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the investigated geometry where an emitter with defined absorption and emission dipole moments µab,em is placed above a crossed gold grating at a distance f. The emitter represents a fluorophore label attached to a detection antibody (dAb) that is used in (b) sandwich immunoassay.

Fig. 2
Fig. 2

Schematic optical setups for the excitation and collecting of fluorescence light emitted from a plasmonic sensor chip. A laser band-pass filter (LBF), polarizer (POL), neutral density filter (NDF), dichroic mirror (DM), spatial filter (SF), laser notch filter (LNF), and fluorescence band-pass filter (FBPF) were used. Section (a) was used for immunoassay fluorescence measurement and (b) for the angular resolved fluorescence measurement.

Fig. 3
Fig. 3

(a) Electric field intensity |E/E0|2 averaged over the unit cell. The field strength was calculated as a function of distance f from the flat and corrugated gold surface f for normally incident plane wave at the wavelength of λex = 633 nm and the polarization of electric intensity vector E0 parallel to y axis. (b) Example of the near field electric intensity for indicated cross-section of the unit cell and polarization of the excitation beam noted as an arrow.

Fig. 4
Fig. 4

(a) Simulations of angular distribution of far-field fluorescence intensity F(θ,φ) from randomly oriented fluorophore that emits at a distance f = 20 nm from a flat (left) and corrugated (right) gold surface at a wavelength of λem = 670 nm. Both distributions are normalized to the maximum intensity. (b) For the same geometry, a comparison of far-field fluorescence intensity F(θ) from above the flat and corrugated surfaces was calculated for the azimuthal angle φ = 0. The polar angle θ is assumed in air and the refraction at the interfaces is taken into account.

Fig. 5
Fig. 5

Measured dependence of the reflectivity from corrugated gold surface on polar angle θ and wavelength λ. Azimuthal angle was set to φ = 0 and (a) TM and (b) TE polarization was selected for the excitation of PSPs at the interface between gold and water via diffraction orders ( ± 1,0) and (0, ± 1) respectively. (c) AFM characterization of the corrugated gold surface.

Fig. 6
Fig. 6

Measured angular distribution of far-field fluorescence intensity F(θ,φ) emitted from randomly oriented DiD dyes dispersed in a PMMA layer that was attached to a flat (left) and corrugated (right) Au surfaces. The polar angle θ is given in air.

Fig. 7
Fig. 7

(a) Kinetics of fluorescence intensity F measured upon a sandwich immunoassay with the IL-6 analyte concentration of 0 (control), 0.43 (cycle I), and 4.3 nM (cycle II). (b) Detailed comparison of the fluorescence intensity Fmeasured on structured and flat surface upon a sandwich immunoassay cycle with the analyte concentration of 4.3 nM.

Tables (1)

Tables Icon

Table 1 Summary of Key Contributions to EF (Defined as Ratio of Fluorescence Signal Emitted from Structured and Flat Surfaces) for Randomly Aligned Absorption and Emission Dipoles Placed at a Distance of f = 15 and 20 nm from an Au Surface

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EF= | E ( λ ex ) μ ab | 2 ×η×CE | E 0 ( λ ex ) μ ab | 2 × η 0 ×C E 0 ,
CE= 0 2π 0 θ max F( θ,φ, μ em )sinθdφdθ / 0 2π 0 π F( θ,φ, μ em )sinθdφdθ ,

Metrics