Abstract

A Mach-Zehnder interferometer (MZI) based fiber axial micro-displacement sensor was proposed. The MZI was constructed by a bowknot-type taper (BTT) combining with a fiber core-offset between two single mode fibers (SMFs). The axial micro-displacement of the core offset is correlated with the MZI transmission spectrum and varied with the interferometer arm length. For the arm length L of 12, 18, 24 and 30 mm, the proposed sensors showed high sensitivity of −0.362 dB/μm, −0.385 dB/μm, −0.332 dB/μm and −0.235dB/μm, and temperature errors of −0.056 dB/°C, −0.036 dB/°C, −0.044 dB/°C, −0.048 dB/°C, respectively. The theoretical simulations of the energy distributions were also given. The obtained sensitivity of −0.385 dB/μm is about 150 times high than that of the current similar existing axial micro-displacement sensor.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer

Chuan Zhong, Changyu Shen, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, and Jianfeng Wang
J. Opt. Soc. Am. B 29(5) 1136-1140 (2012)

Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method

Changyu Shen, Chuan Zhong, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, Jianfeng Wang, and Huaping Gong
Opt. Express 20(14) 15406-15417 (2012)

Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Alemohammad, E. Foroozmehr, B. S. Cotten, and E. C. Toyserkani, “A dual-parameter optical fiber sensor for concurrent strain and temperature measurement: design, fabrication, packaging, and calibration,” J. Lightwave Technol. 31(8), 1198–1204 (2013).
    [Crossref]
  2. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
    [Crossref]
  3. C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
    [Crossref]
  4. O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
    [Crossref]
  5. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14(1), 298–305 (2006).
    [Crossref] [PubMed]
  6. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  7. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
    [Crossref]
  8. Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  9. B. Dong and J. Hao, “Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal interferometer based micro-displacement sensor,” J. Opt. Soc. Am. B 28(10), 2332–2336 (2011).
    [Crossref]
  10. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
    [Crossref]
  11. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
    [Crossref]
  12. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  13. C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
    [Crossref]
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  15. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
    [Crossref] [PubMed]

2014 (2)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (3)

2009 (1)

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

2007 (1)

2006 (2)

2005 (1)

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

1997 (1)

Albert, J.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Alemohammad, H. R.

Birks, T. A.

Boag, A.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

Cao, L.

Chen, C.

Chen, D.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

Chen, Q. D.

Cheung, G.

Choi, H. Y.

Chu, J.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
[Crossref]

Cotten, B. S.

Dong, B.

Dong, X.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

Farrell, G.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Foroozmehr, E.

Gong, H.

Gu, C.

Hao, J.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

He, Q.

Jacques, F.

Jin, G.

Jin, S.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

Jin, Y.

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

Kim, M. J.

Knight, J. C.

Lee, B. H.

Levy, O.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

Li, Y.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

Lu, Y.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

Mansuripur, M.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

Nathan, M.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

Semenova, Y.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Shen, C.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
[Crossref]

Steinberg, B. Z.

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

Sun, H. B.

Tian, Z.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Toyserkani, E. C.

Wang, J.

Wang, P.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Wu, Q.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

Xu, Z.

Xue, Y.

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yang, R.

You, Y.

Yu, Y. S.

Zhang, Y.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zhong, C.

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
[Crossref]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29(5), 1136–1140 (2012).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

Zhou, W.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zou, X.

Appl. Phys. Lett. (2)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultrasensitive displacement sensing using photonic crystal waveguides,” Appl. Phys. Lett. 86(10), 104102 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

Z. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[Crossref]

C. Shen, J. Chu, Y. Lu, D. Chen, C. Zhong, Y. Li, X. Dong, and S. Jin, “High Sensitive Micro-Displacement Sensor Based on M-Z Interferometer by a Bowknot Type Taper,” IEEE Photon. Technol. Lett. 26(1), 62–65 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sens. Actuators B Chem. 168(20), 360–364 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed micro-displacement sensor. (b) The partial enlarged drawing of the MZI. (c) Pictures of the BTT and the boundary between SMF1 and SMF2 shown on the fusion splicer screen and the BTT’s micrograph.
Fig. 2
Fig. 2 Transmission spectra of the MZI corresponding to different axial micro-displacements.
Fig. 3
Fig. 3 Spatial frequency spectra of the proposed sensor.
Fig. 4
Fig. 4 Fringes visibility variations and resonant wavelength shifts as a function of the micro-displacements.
Fig. 5
Fig. 5 Interference patterns of proposed sensors varied with the micro-displacements for arm lengths of (a) 18, (b) 24 and (c) 30 mm, respectively.
Fig. 6
Fig. 6 Fringe visibilities as a function of micro-displacements under different arm lengths.
Fig. 7
Fig. 7 (a) Icore and (b) Icaldding distributions with an interferometer arm lengths of 12 mm for the displacement of 0 μm.
Fig. 8
Fig. 8 I1 and I2 distributions with four different interferometer arm lengths of 12 mm, 18 mm, 24 mm, and 30 mm under different axial micro-displacements.
Fig. 9
Fig. 9 Temperature errors of the proposed sensors for the micro-displacement of 30 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Φ m =2πΔ n eff m L/λ
I= I 1 + I 2 +2 I 1 I 2 cos( Φ m )
K= 2 I 1 I 2 I 1 + I 2
θ i =arcsin(N A i / n 0 )
R 1 =( D core 2tan θ core +d )tan θ core
R 2 =( D cladding 2tan θ cladding +d )tan θ cladding
I 1 =T S S 1 × I core =T S π R 1 2 × I core
I 2 =T S S 2 × I cladding =T S π R 2 2 × I cladding
K= 2 R 1 R 2 I core I cladding I core R 2 2 + I cladding R 1 2

Metrics