Abstract

An all glass optofludic biosensor with high quality-factor Fabry-Perot cavity (FPC) channel was reported. The all glass sandwich structure can completely eliminate the etching roughness of the channel surface, and can extend the operating wavelength to visible and ultraviolet regions compared with that of Si-based sensor. The quality-factor of the FPC channel is 875, and the system noise can be reduced to 1.2 nV by combining optical differential detection with phase lock-in detection. A detection limit of 15ng/mL for glucose solution, which corresponds to a refractive index unit of 2.0 × 10−9, was experimentally demonstrated. The all glass FPC sensor features low cost and robust compared with surface-plasmon-resonance sensor and ring-resonator sensor.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

Optofluidic microcapillary biosensor for label-free, low glucose concentration detection

Hongdan Wan, Jijing Chen, Cheng Wan, Quan Zhou, Jie Wang, and Zuxing Zhang
Biomed. Opt. Express 10(8) 3929-3937 (2019)

Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor

Zhengyong Li, Changrui Liao, Danni Chen, Jun Song, Wei Jin, Gang-Ding Peng, Feng Zhu, Ying Wang, Jun He, and Yiping Wang
Opt. Express 25(15) 17105-17113 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  3. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  4. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
    [Crossref]
  5. Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
    [Crossref] [PubMed]
  6. C. E. Berger and J. Greve, “Differential SPR immunosensing,” Sens. Actuators B Chem. 63(1-2), 103–108 (2000).
    [Crossref]
  7. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [Crossref] [PubMed]
  8. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [Crossref] [PubMed]
  9. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]
  10. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  11. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  12. L. Mosquera, D. Sáez-Rodriguez, J. L. Cruz, and M. V. Andrés, “In-fiber Fabry-Perot refractometer assisted by a long-period grating,” Opt. Lett. 35(4), 613–615 (2010).
    [Crossref] [PubMed]
  13. R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
    [Crossref]
  14. T. Zhang, Z. Gong, R. Giorno, and L. Que, “A nanostructured Fabry-Perot interferometer,” Opt. Express 18(19), 20282–20288 (2010).
    [Crossref] [PubMed]
  15. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
    [Crossref]
  16. P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
    [Crossref]
  17. P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
    [Crossref]
  18. H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
    [Crossref]
  19. E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
    [Crossref] [PubMed]
  20. Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
    [Crossref]
  21. Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77(24), 7872–7877 (2005).
    [Crossref] [PubMed]
  22. H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
    [Crossref] [PubMed]
  23. T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
    [Crossref]

2013 (1)

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

2012 (2)

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (1)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

2006 (3)

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77(24), 7872–7877 (2005).
[Crossref] [PubMed]

2004 (1)

2000 (1)

C. E. Berger and J. Greve, “Differential SPR immunosensing,” Sens. Actuators B Chem. 63(1-2), 103–108 (2000).
[Crossref]

1984 (1)

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Aminabhavi, T. M.

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Andrés, M. V.

Berger, C. E.

C. E. Berger and J. Greve, “Differential SPR immunosensing,” Sens. Actuators B Chem. 63(1-2), 103–108 (2000).
[Crossref]

Bienstman, P.

Bogaerts, W.

Bornhop, D. J.

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77(24), 7872–7877 (2005).
[Crossref] [PubMed]

Cai, H.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Cao, T.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Chang, Y.-F.

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

Chou, C.

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

Claes, T.

Crawford, R. J.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Cruz, J. L.

Day, D.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

Gervinskas, G.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Giorno, R.

Gong, Z.

Greve, J.

C. E. Berger and J. Greve, “Differential SPR immunosensing,” Sens. Actuators B Chem. 63(1-2), 103–108 (2000).
[Crossref]

Guo, Y.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Ho, H. P.

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Hosseini, H. M. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Huang, H.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Ivanova, E. P.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Jones, R. T.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Juodkazis, S.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Kong, S. K.

Kumar, D.

H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
[Crossref]

Law, W. C.

Lear, K. L.

H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
[Crossref]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, H.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Li, Y.-C.

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Lin, C.

Liu, A. Q.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Liu, P.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Liu, Q.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Liu, X.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Masson, J.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Mitik-Dineva, N.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Mosquera, L.

Nittoor, V. R.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Oveys, H.

Peter, Y. A.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Qi, Z.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Que, L.

Reddy, K.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Ren, M.

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Sáez-Rodriguez, D.

Shao, H.

H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
[Crossref]

Shelar, H. S.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

St-Gelais, R.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Su, L.-C.

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tang, Z.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Truong, V. K.

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

Wang, P.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Wang, Z.

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77(24), 7872–7877 (2005).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

Wu, H.

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Wu, S. Y.

Xiao, L.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yap, P. H.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yu, H.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Zhang, J.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

Zhang, T.

Zhang, W.

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

Zhang, X. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Chem. (2)

Y.-C. Li, Y.-F. Chang, L.-C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem. 80(14), 5590–5595 (2008).
[Crossref] [PubMed]

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77(24), 7872–7877 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102(16), 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100(23), 233705 (2012).
[Crossref]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Biosens. Bioelectron. (2)

H. Yu, H. Cai, W. Zhang, L. Xiao, Q. Liu, and P. Wang, “A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential,” Biosens. Bioelectron. 24(5), 1462–1468 (2009).
[Crossref] [PubMed]

E. P. Ivanova, V. K. Truong, G. Gervinskas, N. Mitik-Dineva, D. Day, R. T. Jones, R. J. Crawford, and S. Juodkazis, “Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors,” Biosens. Bioelectron. 35(1), 369–375 (2012).
[Crossref] [PubMed]

IEEE Sensors J. (1)

H. Shao, D. Kumar, and K. L. Lear, “Single-cell detection using optofluidic intracavity spectroscopy,” IEEE Sensors J. 6(6), 1543–1550 (2006).
[Crossref]

J. Chem. Eng. Data (1)

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Sens. Actuators B Chem. (2)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

C. E. Berger and J. Greve, “Differential SPR immunosensing,” Sens. Actuators B Chem. 63(1-2), 103–108 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic structure, (b) fabrication procedure, and (c) optical photograph of the FPC sensor.
Fig. 2
Fig. 2 (a) Schematic diagram and (b) optical photograph of the measurement system.
Fig. 3
Fig. 3 Transmission spectra of FPC sensor when the channel was filled with DI water or glucose solution.
Fig. 4
Fig. 4 (a) The measurement results of sample 5 and (b) sample 10.
Fig. 5
Fig. 5 Relationship between the output-signal and the refractive index difference.
Fig. 6
Fig. 6 Output voltage (a) without employing ODD or PLD, (b)with PLD, (c) with ODD, and (d) by combining ODD with PLD.

Tables (2)

Tables Icon

Table 1 Glu samples with different concentrations and RI-difference Δn

Tables Icon

Table 2 Device parameters of some kinds of optofluidic biosensors based on Fabry-Perot cavity

Metrics