Abstract

We demonstrate the evolution of the Bragg gratings inscribed in Panda fibers with chemical etching. The resonance wavelengths can blueshift with cladding reduction similar to the conventional counterparts. But the wavelength separation between the two polarizations is co-determined by the stress and the asymmetric shape effects. The fast and slow axes of the fiber can be reversed with each other and zero birefringence can be achieved by chemical etching the structure. When the stress-applying parts of the fiber are removed, the finalizing grating can be exploited for the temperature-independent refractive index sensing, since the modes corresponding to the two polarizations exhibit the dissimilar responses to the external refractive index change but the same response to temperature. Our device is featured with easy achievement, spectral controllability, and relative robustness.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating

Pouneh Saffari, Zhijun Yan, Kaiming Zhou, and Lin Zhang
Appl. Opt. 51(20) 4715-4721 (2012)

Partially etched chirped fiber Bragg grating (pECFBG) for joint temperature, thermal profile, and refractive index detection

Sanzhar Korganbayev, Takhmina Ayupova, Marzhan Sypabekova, Aliya Bekmurzayeva, Madina Shaimerdenova, Kanat Dukenbayev, Carlo Molardi, and Daniele Tosi
Opt. Express 26(14) 18708-18720 (2018)

Bragg gratings in rectangular microfiber for temperature independent refractive index sensing

Yang Ran, Long Jin, Li-Peng Sun, Jie Li, and Bai-Ou Guan
Opt. Lett. 37(13) 2649-2651 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Xu, The Measurement of Physical Fields Using Optical Fibres and Bragg Gratings (University of Southampton, 1995).
  2. A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
    [Crossref]
  3. M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
    [Crossref]
  4. E. Udd, “Review of multi-parameter fiber grating sensors,” Proc. SPIE 6770, 677002 (2007).
    [Crossref]
  5. T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg grating inscription in few-mode highly birefringent microstructured fiber,” Opt. Lett. 38(13), 2224–2226 (2013).
    [Crossref] [PubMed]
  6. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  7. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
    [Crossref] [PubMed]
  8. Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
    [Crossref] [PubMed]
  9. K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett. 38(4), 594–596 (2013).
    [Crossref] [PubMed]
  10. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  11. R. Kashyap, Fiber Bragg Gratings (Elsevier Academic, 2010).
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  13. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
    [Crossref]
  14. L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
    [Crossref]
  15. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
    [Crossref]
  16. B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
    [Crossref]
  17. G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
    [Crossref]
  18. N. Chen, B. Yun, Y. Wang, and Y. Cui, “Theoretical and experimental study on etched fiber Bragg grating cladding mode resonances for ambient refractive index sensing,” J. Opt. Soc. Am. B 24(3), 439–445 (2007).
    [Crossref]
  19. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  20. X. F. Huang, Z. M. Chen, L. Y. Shao, K. F. Cen, D. R. Sheng, J. Chen, and H. Zhou, “Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating,” Appl. Opt. 47(4), 504–511 (2008).
    [Crossref] [PubMed]
  21. J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).
  22. S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
    [Crossref]
  23. A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
    [Crossref]
  24. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  25. J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
    [Crossref]
  26. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [Crossref]
  27. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
    [Crossref]

2014 (1)

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

2013 (4)

2012 (1)

2011 (1)

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

2009 (1)

2008 (2)

2007 (3)

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

E. Udd, “Review of multi-parameter fiber grating sensors,” Proc. SPIE 6770, 677002 (2007).
[Crossref]

N. Chen, B. Yun, Y. Wang, and Y. Cui, “Theoretical and experimental study on etched fiber Bragg grating cladding mode resonances for ambient refractive index sensing,” J. Opt. Soc. Am. B 24(3), 439–445 (2007).
[Crossref]

2006 (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

2005 (4)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

2004 (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

1995 (1)

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

1994 (1)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Andre, P.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Archambault, J. L.

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Asokan, S.

Bang, O.

Baptista, J. M.

Bartelt, H.

Becker, M.

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Bentley, W. E.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Bette, S.

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Blondel, M.

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Caucheteur, C.

K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett. 38(4), 594–596 (2013).
[Crossref] [PubMed]

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Cen, K. F.

Chah, K.

Chen, J.

Chen, N.

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Chen, Z. M.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Cruz, J. L.

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

Cui, Y.

da Rocha, J.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Dagenais, M.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Dai, J. X.

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

DeShong, P.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

Dixit, S. K.

J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
[Crossref]

Dong, L.

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

Erdogan, T.

Fakis, M.

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Frazão, O.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Guan, B. O.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Huang, X. F.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Hyunmin, Y.

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Ioannou, A.

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Jaroszewicz, L. R.

Jin, L.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Kinet, D.

Kumar, J.

J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
[Crossref]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Lee, S. M.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Li, J.

Li, X. B.

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lima, M.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Liu, H. L.

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mahakud, R.

J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
[Crossref]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Marc, P.

Martynkien, T.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Megret, P.

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Mégret, P.

Mergo, P.

Mizrahi, V.

Murawski, M.

Nasilowski, T.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Nogueira, R.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Park, J.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

Persephonis, P.

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Pinto, J.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Polyzos, D.

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Prakash, O.

J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
[Crossref]

Prashanth, G. R.

Ran, Y.

Reekie, L.

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

Renilkumar, M.

Rindorf, L.

Rothhardt, M.

Saini, S. S.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Santos, J. L.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Shao, L. Y.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Sheng, D. R.

Shivananju, B. N.

Skorupski, K.

Stanford, C.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

Sun, L. P.

Szostkiewicz, L.

Szymanski, M.

Teixeira, A.

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

Tenderenda, T.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tong, X. L.

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

Tsigaridas, G.

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Udd, E.

E. Udd, “Review of multi-parameter fiber grating sensors,” Proc. SPIE 6770, 677002 (2007).
[Crossref]

Urbanczyk, W.

Varma, M. M.

Wang, Y.

Wojcik, J.

Wuilpart, M.

K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett. 38(4), 594–596 (2013).
[Crossref] [PubMed]

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yang, M. H.

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yun, B.

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Zhou, H.

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Electron. Lett. (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (3)

L. Dong, J. L. Cruz, L. Reekie, and J. L. Archambault, “Tuning and chirping fiber Bragg gratings by deep etching,” IEEE Photon. Technol. Lett. 7(12), 1433–1435 (1995).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19(18), 1341–1343 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Select. Topics Quantum Electron. (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” J. Select. Topics Quantum Electron. 11(4), 864–872 (2005).
[Crossref]

Meas. Sci. Technol. (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

J. X. Dai, M. H. Yang, X. B. Li, H. L. Liu, and X. L. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Commun. 17(3), 210–213 (2011).

M. Wuilpart, C. Caucheteur, S. Bette, P. Megret, and M. Blondel, “Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers,” Opt. Commun. 247(4-6), 239–245 (2005).
[Crossref]

Opt. Eng. (1)

J. Kumar, R. Mahakud, O. Prakash, and S. K. Dixit, “Study on hydrofluoric acid-based clad etching and chemical sensing characteristics of fiber Bragg gratings of different reflectivity fabricated under different UV exposure times,” Opt. Eng. 52(5), 054402 (2013).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

E. Udd, “Review of multi-parameter fiber grating sensors,” Proc. SPIE 6770, 677002 (2007).
[Crossref]

Sens. Actuators A Phys. (1)

G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sens. Actuators A Phys. 209, 9–15 (2014).
[Crossref]

Other (3)

M. G. Xu, The Measurement of Physical Fields Using Optical Fibres and Bragg Gratings (University of Southampton, 1995).

A. Teixeira, R. Nogueira, P. Andre, M. Lima, J. Pinto, and J. da Rocha, “Applications of Highly Birefringent Fibre Bragg Gratings,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2004), pp. 69 – 72.
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Elsevier Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for chemical etching the FBGs inscribed in Panda fibers, corresponding to the structures with cladding partly etched and SAPs unetched (fiber A), partially-etched (fiber B), and completely-removed (fiber C), respectively. Several microscope pictures of fiber cross sections are provided as insets.
Fig. 2
Fig. 2 (a) Evolution of transmission spectra for the FBG in Panda fiber with cladding etching: a, b, Δλ = ① 125μm, 125μm, −0.584nm; ② ~86.7μm, ~58μm, −0.270nm; ③ ~77.3μm, ~12μm, 0.077nm; ④~74.5μm, ~8μm, 0.572nm, respectively. (b) Resonance wavelengths and the separation Δλ between the resonance wavelengths corresponding to the two polarizations as functions of fiber size a. The regions of A, B, and C with relation to Fig. 1 are marked.
Fig. 3
Fig. 3 (a) Transmission spectra at different RIs. (b) Wavelength shifts as functions of external RI. Inset is the separation between the resonance wavelengths corresponding to the two polarizations versus RI.
Fig. 4
Fig. 4 (a) Transmission spectra at different temperatures. (b) Wavelength shifts as functions of temperature. Inset is the separation between the resonance wavelengths corresponding to the two polarizations versus temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= B Γ λ g

Metrics