Abstract

GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive index profiles. Surface antireflection properties were calculated and analyzed for incident light with wavelength, polarization and angle dependences. The surface antireflection properties of GaN nanostructures based on six-sided pyramid with both uniform and non-uniform patterns were also investigated. Results indicate a significant dependence of the surface antireflection on the refractive index profiles of surface nanostructures as well as their pattern uniformity. The GaN nanostructures with linear refractive index profile show the best performance to be used as broadband omnidirectional antireflection structures.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Antireflective property of thin film a-Si solar cell structures with graded refractive index structure

Sung Jun Jang, Young Min Song, Chan Il Yeo, Chang Young Park, Jae Su Yu, and Yong Tak Lee
Opt. Express 19(S2) A108-A117 (2011)

Using autocloning effects to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells

Y. C. Lee, S. C. Tseng, H. L Chen, C. C. Yu, W. L. Cheng, C. H. Du, and C. H. Lin
Opt. Express 18(S3) A421-A431 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
    [Crossref]
  2. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
    [Crossref]
  3. E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
    [Crossref]
  4. L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
    [Crossref]
  5. I. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon,” Turk. J. Phys. 26, 349–354 (2002).
  6. S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
    [Crossref]
  7. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  8. Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
    [Crossref]
  9. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [Crossref] [PubMed]
  10. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [Crossref]
  11. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  12. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
    [Crossref]
  13. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
    [Crossref] [PubMed]
  14. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  15. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [Crossref]
  16. C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
    [Crossref]
  17. L. Han and H. Zhao, “Simulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics,” J. Appl. Phys. 115(13), 133102 (2014).
    [Crossref]
  18. L. Han, T. A. Piedimonte, and H. Zhao, “Experimental exploration of the fabrication of GaN microdome arrays based on a self-assembled approach,” Opt. Mater. Express 3(8), 1093 (2013).
    [Crossref]
  19. W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
    [Crossref]
  20. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [Crossref] [PubMed]
  21. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).
  22. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994).
    [Crossref] [PubMed]
  23. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8(3), 549–553 (1991).
    [Crossref]
  24. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
    [Crossref]
  25. T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
    [Crossref]
  26. J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
    [Crossref]
  27. Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
    [Crossref]
  28. A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
    [Crossref] [PubMed]
  29. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
    [Crossref]
  30. S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
    [Crossref]

2014 (2)

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

L. Han and H. Zhao, “Simulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics,” J. Appl. Phys. 115(13), 133102 (2014).
[Crossref]

2013 (2)

L. Han, T. A. Piedimonte, and H. Zhao, “Experimental exploration of the fabrication of GaN microdome arrays based on a self-assembled approach,” Opt. Mater. Express 3(8), 1093 (2013).
[Crossref]

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

2012 (1)

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

2011 (4)

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

2010 (1)

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

2009 (3)

J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
[Crossref]

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (5)

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

2006 (1)

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

2005 (2)

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

2004 (1)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

2003 (1)

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

2002 (1)

I. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon,” Turk. J. Phys. 26, 349–354 (2002).

2000 (1)

S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
[Crossref]

1994 (1)

1991 (1)

1983 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Akouala, C.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Brundrett, D. L.

Bryan, I.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Burnham, S.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Cartwright, A.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Chang, Y. C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, C. C.

Chen, F.

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Cheng, Y. J.

Cheung, M.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Chiu, C. H.

Choi, S. W.

S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
[Crossref]

Collazo, R.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Cruz, S. C.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

DenBaars, S. P.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Doolittle, W. A.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Edgar, J. H.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Eriksson, M.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Farrell, R. M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Forsberg, U.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Gaylord, T. K.

Glytsis, E. N.

Guo, W.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Han, L.

L. Han and H. Zhao, “Simulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics,” J. Appl. Phys. 115(13), 133102 (2014).
[Crossref]

L. Han, T. A. Piedimonte, and H. Zhao, “Experimental exploration of the fabrication of GaN microdome arrays based on a self-assembled approach,” Opt. Mater. Express 3(8), 1093 (2013).
[Crossref]

Han, S.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Henderson, W.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Holtz, P. O.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Horng, J. H.

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Houng, M. P.

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Hsieh, M. H.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hsu, C. W.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Hsu, S. H.

Hsu, T. C.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hultman, L.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Hung, Y. Y.

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Ikeda, N.

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Iza, M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Janzén, E.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Jiang, B.

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Jiang, P.

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Jou, M. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Kantarli, K.

I. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon,” Turk. J. Phys. 26, 349–354 (2002).

Karlsson, K. F.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Kavakli, I. G.

I. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon,” Turk. J. Phys. 26, 349–354 (2002).

Keller, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Kim, J.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, J. Y.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Kim, K.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Koide, Y.

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Kuo, H. C.

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[Crossref] [PubMed]

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Kuo, T. W.

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Kurtz, S.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Kwak, J. S.

J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
[Crossref]

Lang, J. R.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Lee, B. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Lee, J.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Lee, S. E.

S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
[Crossref]

Lee, Y. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Liao, M.

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Lin, S. X.

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Linn, N. C.

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Lu, T. C.

Lundskog, A.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Min, W.-L.

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Mishra, U. K.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Mita, S.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Nakamura, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Namkoong, G.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Neufeld, C. J.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Niki, S.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Oh, H. S.

J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
[Crossref]

Palisaitis, J.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Persson, P. O. A.

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Piedimonte, T. A.

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Rice, A.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Sang, L.

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Seo, J. W.

J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
[Crossref]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Shen, Q.

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

Sitar, Z.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Southwell, W. H.

Speck, J. S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Sumiya, M.

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Sun, C.-H.

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

Tampo, H.

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

Trybus, E.

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

Tweedie, J.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Wang, S. C.

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[Crossref] [PubMed]

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xie, J.

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

Yi, J.

S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
[Crossref]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Yu, P.

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Zhang, L.

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

Zhao, H.

L. Han and H. Zhao, “Simulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics,” J. Appl. Phys. 115(13), 133102 (2014).
[Crossref]

L. Han, T. A. Piedimonte, and H. Zhao, “Experimental exploration of the fabrication of GaN microdome arrays based on a self-assembled approach,” Opt. Mater. Express 3(8), 1093 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Zhuang, D.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Adv. Mater. (1)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91(23), 231105 (2007).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, “Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer,” Appl. Phys. Lett. 99(16), 161109 (2011).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. W. Kuo, S. X. Lin, Y. Y. Hung, J. H. Horng, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness,” IEEE Photon. Technol. Lett. 23(6), 362–364 (2011).
[Crossref]

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005).
[Crossref]

J. Appl. Phys. (4)

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

L. Han and H. Zhao, “Simulation analysis of GaN microdomes with broadband omnidirectional antireflection for concentrator photovoltaics,” J. Appl. Phys. 115(13), 133102 (2014).
[Crossref]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Cryst. Growth (2)

E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. A. Doolittle, M. Cheung, and A. Cartwright, “InN: a material with photovoltaic promise and challenges,” J. Cryst. Growth 288(2), 218–224 (2006).
[Crossref]

W. Guo, J. Xie, C. Akouala, S. Mita, A. Rice, J. Tweedie, I. Bryan, R. Collazo, and Z. Sitar, “Comparative study of etching high crystalline quality AlN and GaN,” J. Cryst. Growth 366, 20–25 (2013).
[Crossref]

J. Electrochem. Soc. (1)

S. Han, J. Kim, J. Y. Kim, K. Kim, H. Tampo, S. Niki, and J. Lee, “Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching,” J. Electrochem. Soc. 157(1), D60–D64 (2010).
[Crossref]

J. Korean Phys. Soc. (1)

J. W. Seo, H. S. Oh, and J. S. Kwak, “Improved light-extraction efficiency of the AlGaInP-based light-emitting diodes fabricated using a chemical wet etch of n-AlGaInP layer,” J. Korean Phys. Soc. 55(1), 314–317 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. Rep. (1)

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. Rep. 48(1), 1–46 (2005).
[Crossref]

Nano Lett. (1)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

A. Lundskog, J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. A. Persson, U. Forsberg, P. O. Holtz, and E. Janzén, “InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids,” Nanotechnology 23(30), 305708 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Prog. Electromagnetics Res. (1)

Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of graded refractive index profile for broadband omnidirectional antireflection coatings using genetic programming,” Prog. Electromagnetics Res. 145, 39–48 (2014).
[Crossref]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Thin Solid Films (1)

S. E. Lee, S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate,” Thin Solid Films 376(1-2), 208–213 (2000).
[Crossref]

Turk. J. Phys. (1)

I. G. Kavakli and K. Kantarli, “Single and double-layer antireflection coatings on silicon,” Turk. J. Phys. 26, 349–354 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of nanostructures (a) rotational symmetric dome shape (b) six-sided pyramids shape with uniform hexagonal close-packed pattern and (c) six-sided pyramids shape with non-uniform hexagonal close-packed pattern. Red dash lines indicate nanostructures occupied in hexagonal area, with length of D. L is side length of hexagonal area, and r is the radius of nanostructures.
Fig. 2
Fig. 2 3D schematics of GaN nanostructures with (a) linear, (b) cubic, (c) quintic refractive index profiles, and the corresponding refractive index profiles shown in (d), (e), and (f) respectively.
Fig. 3
Fig. 3 Surface reflection of the flat GaN surface, GaN nanostructures (D = 200nm, H = 250nm) with linear, cubic, and quintic index profiles, as a function of light incidence angle for both (a) S and (b) P polarizations with fixed incidence wavelength λ = 500nm.
Fig. 4
Fig. 4 Surface reflection of the flat GaN surface, GaN nanostructures (D = 200nm, H = 250nm) with linear, cubic, quintic index profiles, as a function of light incidence wavelength for both (a) S polarization and (b) P polarization at normal incidence.
Fig. 5
Fig. 5 Schematics of 3D GaN six-sided pyramid structures with (a) (c) close-packed and (b) (d) non-close-packed refractive index profiles, respectively. (c) and (d) show the top view of the pyramid structures with the corresponding effective refractive index profiles of (e) and (f).
Fig. 6
Fig. 6 Surface reflection of the flat GaN surface, GaN based six-sided uniform close-packed pyramid structures (L = 200nm, H = 188nm) and non-uniform pyramid structures (L = 200nm, H = 188nm; L = 100nm, H = 94nm) as a function of light incidence angle for both (a) S and (b) P polarizations with fixed incidence wavelength λ = 500nm.
Fig. 7
Fig. 7 Surface reflection of the flat GaN surface, GaN based six-sided uniform close-packed pyramid structures (L = 200nm, H = 188nm) and non-uniform pyramid structures (L = 200nm, H = 188nm; L = 100nm, H = 94nm) as a function of light incidence wavelength for both (a) S polarization and (b) P polarization at normal incidence.
Fig. 8
Fig. 8 Un-polarized surface reflection of the flat GaN surface, GaN nanostructures (D = 200nm, H = 250nm) with linear, cubic, and quintic index profiles, uniform patterned GaN pyramid nanostructures (L = 200nm, H = 188nm) and non-uniform patterned GaN pyramid nanostructures (L = 200nm, H = 188nm mixed with L = 100nm, H = 94nm) as a function of light incidence angle with fixed incidence wavelength 500nm.
Fig. 9
Fig. 9 Un-polarized surface reflection of the flat GaN surface, GaN nanostructures (D = 200nm, H = 250nm) with linear, cubic, and quintic index profiles, uniform pattern GaN pyramid nanostructures (L = 200nm, H = 188nm) and non-uniform pattern GaN pyramid nanostructures (L = 200nm, H = 188nm mixed with L = 100nm, H = 94nm) as a function of light incidence wavelength for normal incidence.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Linear index profile: n= n i +( n S n i )
Cubic index profile: n= n i +( n S n i )(3 t 2 2 t 3 )
Quintic index profile: n= n i +( n S n i )(10 t 3 15 t 4 +6 t 5 )
n eff, TE = (1f) n 1 2 +f n 2 2
n eff, TM = n 1 n 2 (1f) n 1 2 +f n 2 2
f= π r 2 2 3 L 2
f= 2 3 r 2 2 3 L 2

Metrics